# -*- coding: utf-8 -*- """ # -------------------------------------------- # Super-Resolution # -------------------------------------------- # # Kai Zhang (cskaizhang@gmail.com) # https://github.com/cszn # From 2019/03--2021/08 # -------------------------------------------- """ import random from functools import partial import albumentations import cv2 import ldm.modules.image_degradation.utils_image as util import numpy as np import scipy import scipy.stats as ss import torch from scipy import ndimage from scipy.interpolate import interp2d from scipy.linalg import orth def modcrop_np(img, sf): """ Args: img: numpy image, WxH or WxHxC sf: scale factor Return: cropped image """ w, h = img.shape[:2] im = np.copy(img) return im[: w - w % sf, : h - h % sf, ...] """ # -------------------------------------------- # anisotropic Gaussian kernels # -------------------------------------------- """ def analytic_kernel(k): """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" k_size = k.shape[0] # Calculate the big kernels size big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) # Loop over the small kernel to fill the big one for r in range(k_size): for c in range(k_size): big_k[2 * r : 2 * r + k_size, 2 * c : 2 * c + k_size] += k[r, c] * k # Crop the edges of the big kernel to ignore very small values and increase run time of SR crop = k_size // 2 cropped_big_k = big_k[crop:-crop, crop:-crop] # Normalize to 1 return cropped_big_k / cropped_big_k.sum() def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): """generate an anisotropic Gaussian kernel Args: ksize : e.g., 15, kernel size theta : [0, pi], rotation angle range l1 : [0.1,50], scaling of eigenvalues l2 : [0.1,l1], scaling of eigenvalues If l1 = l2, will get an isotropic Gaussian kernel. Returns: k : kernel """ v = np.dot( np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1.0, 0.0]), ) V = np.array([[v[0], v[1]], [v[1], -v[0]]]) D = np.array([[l1, 0], [0, l2]]) Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) return k def gm_blur_kernel(mean, cov, size=15): center = size / 2.0 + 0.5 k = np.zeros([size, size]) for y in range(size): for x in range(size): cy = y - center + 1 cx = x - center + 1 k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) k = k / np.sum(k) return k def shift_pixel(x, sf, upper_left=True): """shift pixel for super-resolution with different scale factors Args: x: WxHxC or WxH sf: scale factor upper_left: shift direction """ h, w = x.shape[:2] shift = (sf - 1) * 0.5 xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) if upper_left: x1 = xv + shift y1 = yv + shift else: x1 = xv - shift y1 = yv - shift x1 = np.clip(x1, 0, w - 1) y1 = np.clip(y1, 0, h - 1) if x.ndim == 2: x = interp2d(xv, yv, x)(x1, y1) if x.ndim == 3: for i in range(x.shape[-1]): x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) return x def blur(x, k): """ x: image, NxcxHxW k: kernel, Nx1xhxw """ n, c = x.shape[:2] p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode="replicate") k = k.repeat(1, c, 1, 1) k = k.view(-1, 1, k.shape[2], k.shape[3]) x = x.view(1, -1, x.shape[2], x.shape[3]) x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) x = x.view(n, c, x.shape[2], x.shape[3]) return x def gen_kernel( k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10.0, noise_level=0, ): """ " # modified version of https://github.com/assafshocher/BlindSR_dataset_generator # Kai Zhang # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var # max_var = 2.5 * sf """ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix lambda_1 = min_var + np.random.rand() * (max_var - min_var) lambda_2 = min_var + np.random.rand() * (max_var - min_var) theta = np.random.rand() * np.pi # random theta noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 # Set COV matrix using Lambdas and Theta LAMBDA = np.diag([lambda_1, lambda_2]) Q = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) SIGMA = Q @ LAMBDA @ Q.T INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] # Set expectation position (shifting kernel for aligned image) MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) MU = MU[None, None, :, None] # Create meshgrid for Gaussian [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) Z = np.stack([X, Y], 2)[:, :, :, None] # Calcualte Gaussian for every pixel of the kernel ZZ = Z - MU ZZ_t = ZZ.transpose(0, 1, 3, 2) raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) # shift the kernel so it will be centered # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) # Normalize the kernel and return # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) kernel = raw_kernel / np.sum(raw_kernel) return kernel def fspecial_gaussian(hsize, sigma): hsize = [hsize, hsize] siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] std = sigma [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) arg = -(x * x + y * y) / (2 * std * std) h = np.exp(arg) h[h < scipy.finfo(float).eps * h.max()] = 0 sumh = h.sum() if sumh != 0: h = h / sumh return h def fspecial_laplacian(alpha): alpha = max([0, min([alpha, 1])]) h1 = alpha / (alpha + 1) h2 = (1 - alpha) / (alpha + 1) h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] h = np.array(h) return h def fspecial(filter_type, *args, **kwargs): """ python code from: https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py """ if filter_type == "gaussian": return fspecial_gaussian(*args, **kwargs) if filter_type == "laplacian": return fspecial_laplacian(*args, **kwargs) """ # -------------------------------------------- # degradation models # -------------------------------------------- """ def bicubic_degradation(x, sf=3): """ Args: x: HxWxC image, [0, 1] sf: down-scale factor Return: bicubicly downsampled LR image """ x = util.imresize_np(x, scale=1 / sf) return x def srmd_degradation(x, k, sf=3): """blur + bicubic downsampling Args: x: HxWxC image, [0, 1] k: hxw, double sf: down-scale factor Return: downsampled LR image Reference: @inproceedings{zhang2018learning, title={Learning a single convolutional super-resolution network for multiple degradations}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={3262--3271}, year={2018} } """ x = ndimage.filters.convolve( x, np.expand_dims(k, axis=2), mode="wrap" ) # 'nearest' | 'mirror' x = bicubic_degradation(x, sf=sf) return x def dpsr_degradation(x, k, sf=3): """bicubic downsampling + blur Args: x: HxWxC image, [0, 1] k: hxw, double sf: down-scale factor Return: downsampled LR image Reference: @inproceedings{zhang2019deep, title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={1671--1681}, year={2019} } """ x = bicubic_degradation(x, sf=sf) x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap") return x def classical_degradation(x, k, sf=3): """blur + downsampling Args: x: HxWxC image, [0, 1]/[0, 255] k: hxw, double sf: down-scale factor Return: downsampled LR image """ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap") # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) st = 0 return x[st::sf, st::sf, ...] def add_sharpening(img, weight=0.5, radius=50, threshold=10): """USM sharpening. borrowed from real-ESRGAN Input image: I; Blurry image: B. 1. K = I + weight * (I - B) 2. Mask = 1 if abs(I - B) > threshold, else: 0 3. Blur mask: 4. Out = Mask * K + (1 - Mask) * I Args: img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. weight (float): Sharp weight. Default: 1. radius (float): Kernel size of Gaussian blur. Default: 50. threshold (int): """ if radius % 2 == 0: radius += 1 blur = cv2.GaussianBlur(img, (radius, radius), 0) residual = img - blur mask = np.abs(residual) * 255 > threshold mask = mask.astype("float32") soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) K = img + weight * residual K = np.clip(K, 0, 1) return soft_mask * K + (1 - soft_mask) * img def add_blur(img, sf=4): wd2 = 4.0 + sf wd = 2.0 + 0.2 * sf if random.random() < 0.5: l1 = wd2 * random.random() l2 = wd2 * random.random() k = anisotropic_Gaussian( ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2, ) else: k = fspecial("gaussian", 2 * random.randint(2, 11) + 3, wd * random.random()) img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode="mirror") return img def add_resize(img, sf=4): rnum = np.random.rand() if rnum > 0.8: # up sf1 = random.uniform(1, 2) elif rnum < 0.7: # down sf1 = random.uniform(0.5 / sf, 1) else: sf1 = 1.0 img = cv2.resize( img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]), ) img = np.clip(img, 0.0, 1.0) return img # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): # noise_level = random.randint(noise_level1, noise_level2) # rnum = np.random.rand() # if rnum > 0.6: # add color Gaussian noise # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) # elif rnum < 0.4: # add grayscale Gaussian noise # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) # else: # add noise # L = noise_level2 / 255. # D = np.diag(np.random.rand(3)) # U = orth(np.random.rand(3, 3)) # conv = np.dot(np.dot(np.transpose(U), D), U) # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) # img = np.clip(img, 0.0, 1.0) # return img def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): noise_level = random.randint(noise_level1, noise_level2) rnum = np.random.rand() if rnum > 0.6: # add color Gaussian noise img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype( np.float32 ) elif rnum < 0.4: # add grayscale Gaussian noise img = img + np.random.normal( 0, noise_level / 255.0, (*img.shape[:2], 1) ).astype(np.float32) else: # add noise L = noise_level2 / 255.0 D = np.diag(np.random.rand(3)) U = orth(np.random.rand(3, 3)) conv = np.dot(np.dot(np.transpose(U), D), U) img = img + np.random.multivariate_normal( [0, 0, 0], np.abs(L**2 * conv), img.shape[:2] ).astype(np.float32) img = np.clip(img, 0.0, 1.0) return img def add_speckle_noise(img, noise_level1=2, noise_level2=25): noise_level = random.randint(noise_level1, noise_level2) img = np.clip(img, 0.0, 1.0) rnum = random.random() if rnum > 0.6: img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype( np.float32 ) elif rnum < 0.4: img += img * np.random.normal( 0, noise_level / 255.0, (*img.shape[:2], 1) ).astype(np.float32) else: L = noise_level2 / 255.0 D = np.diag(np.random.rand(3)) U = orth(np.random.rand(3, 3)) conv = np.dot(np.dot(np.transpose(U), D), U) img += img * np.random.multivariate_normal( [0, 0, 0], np.abs(L**2 * conv), img.shape[:2] ).astype(np.float32) img = np.clip(img, 0.0, 1.0) return img def add_Poisson_noise(img): img = np.clip((img * 255.0).round(), 0, 255) / 255.0 vals = 10 ** (2 * random.random() + 2.0) # [2, 4] if random.random() < 0.5: img = np.random.poisson(img * vals).astype(np.float32) / vals else: img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0 noise_gray = ( np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray ) img += noise_gray[:, :, np.newaxis] img = np.clip(img, 0.0, 1.0) return img def add_JPEG_noise(img): quality_factor = random.randint(30, 95) img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) result, encimg = cv2.imencode( ".jpg", img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor] ) img = cv2.imdecode(encimg, 1) img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) return img def random_crop(lq, hq, sf=4, lq_patchsize=64): h, w = lq.shape[:2] rnd_h = random.randint(0, h - lq_patchsize) rnd_w = random.randint(0, w - lq_patchsize) lq = lq[rnd_h : rnd_h + lq_patchsize, rnd_w : rnd_w + lq_patchsize, :] rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) hq = hq[ rnd_h_H : rnd_h_H + lq_patchsize * sf, rnd_w_H : rnd_w_H + lq_patchsize * sf, :, ] return lq, hq def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): """ This is the degradation model of BSRGAN from the paper "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" ---------- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) sf: scale factor isp_model: camera ISP model Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 sf_ori = sf h1, w1 = img.shape[:2] img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop h, w = img.shape[:2] if h < lq_patchsize * sf or w < lq_patchsize * sf: raise ValueError(f"img size ({h1}X{w1}) is too small!") hq = img.copy() if sf == 4 and random.random() < scale2_prob: # downsample1 if np.random.rand() < 0.5: img = cv2.resize( img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), interpolation=random.choice([1, 2, 3]), ) else: img = util.imresize_np(img, 1 / 2, True) img = np.clip(img, 0.0, 1.0) sf = 2 shuffle_order = random.sample(range(7), 7) idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) if idx1 > idx2: # keep downsample3 last shuffle_order[idx1], shuffle_order[idx2] = ( shuffle_order[idx2], shuffle_order[idx1], ) for i in shuffle_order: if i == 0: img = add_blur(img, sf=sf) elif i == 1: img = add_blur(img, sf=sf) elif i == 2: a, b = img.shape[1], img.shape[0] # downsample2 if random.random() < 0.75: sf1 = random.uniform(1, 2 * sf) img = cv2.resize( img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]), ) else: k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) k_shifted = shift_pixel(k, sf) k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel img = ndimage.filters.convolve( img, np.expand_dims(k_shifted, axis=2), mode="mirror" ) img = img[0::sf, 0::sf, ...] # nearest downsampling img = np.clip(img, 0.0, 1.0) elif i == 3: # downsample3 img = cv2.resize( img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]), ) img = np.clip(img, 0.0, 1.0) elif i == 4: # add Gaussian noise img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) elif i == 5: # add JPEG noise if random.random() < jpeg_prob: img = add_JPEG_noise(img) elif i == 6: # add processed camera sensor noise if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) # add final JPEG compression noise img = add_JPEG_noise(img) # random crop img, hq = random_crop(img, hq, sf_ori, lq_patchsize) return img, hq # todo no isp_model? def degradation_bsrgan_variant(image, sf=4, isp_model=None): """ This is the degradation model of BSRGAN from the paper "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" ---------- sf: scale factor isp_model: camera ISP model Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ image = util.uint2single(image) isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 sf_ori = sf h1, w1 = image.shape[:2] image = image.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop h, w = image.shape[:2] hq = image.copy() if sf == 4 and random.random() < scale2_prob: # downsample1 if np.random.rand() < 0.5: image = cv2.resize( image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), interpolation=random.choice([1, 2, 3]), ) else: image = util.imresize_np(image, 1 / 2, True) image = np.clip(image, 0.0, 1.0) sf = 2 shuffle_order = random.sample(range(7), 7) idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) if idx1 > idx2: # keep downsample3 last shuffle_order[idx1], shuffle_order[idx2] = ( shuffle_order[idx2], shuffle_order[idx1], ) for i in shuffle_order: if i == 0: image = add_blur(image, sf=sf) elif i == 1: image = add_blur(image, sf=sf) elif i == 2: a, b = image.shape[1], image.shape[0] # downsample2 if random.random() < 0.75: sf1 = random.uniform(1, 2 * sf) image = cv2.resize( image, ( int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0]), ), interpolation=random.choice([1, 2, 3]), ) else: k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) k_shifted = shift_pixel(k, sf) k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel image = ndimage.filters.convolve( image, np.expand_dims(k_shifted, axis=2), mode="mirror" ) image = image[0::sf, 0::sf, ...] # nearest downsampling image = np.clip(image, 0.0, 1.0) elif i == 3: # downsample3 image = cv2.resize( image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]), ) image = np.clip(image, 0.0, 1.0) elif i == 4: # add Gaussian noise image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25) elif i == 5: # add JPEG noise if random.random() < jpeg_prob: image = add_JPEG_noise(image) # elif i == 6: # # add processed camera sensor noise # if random.random() < isp_prob and isp_model is not None: # with torch.no_grad(): # img, hq = isp_model.forward(img.copy(), hq) # add final JPEG compression noise image = add_JPEG_noise(image) image = util.single2uint(image) example = {"image": image} return example # TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc... def degradation_bsrgan_plus( img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None, ): """ This is an extended degradation model by combining the degradation models of BSRGAN and Real-ESRGAN ---------- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) sf: scale factor use_shuffle: the degradation shuffle use_sharp: sharpening the img Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ h1, w1 = img.shape[:2] img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop h, w = img.shape[:2] if h < lq_patchsize * sf or w < lq_patchsize * sf: raise ValueError(f"img size ({h1}X{w1}) is too small!") if use_sharp: img = add_sharpening(img) hq = img.copy() if random.random() < shuffle_prob: shuffle_order = random.sample(range(13), 13) else: shuffle_order = list(range(13)) # local shuffle for noise, JPEG is always the last one shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6))) shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13))) poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1 for i in shuffle_order: if i == 0: img = add_blur(img, sf=sf) elif i == 1: img = add_resize(img, sf=sf) elif i == 2: img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) elif i == 3: if random.random() < poisson_prob: img = add_Poisson_noise(img) elif i == 4: if random.random() < speckle_prob: img = add_speckle_noise(img) elif i == 5: if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) elif i == 6: img = add_JPEG_noise(img) elif i == 7: img = add_blur(img, sf=sf) elif i == 8: img = add_resize(img, sf=sf) elif i == 9: img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) elif i == 10: if random.random() < poisson_prob: img = add_Poisson_noise(img) elif i == 11: if random.random() < speckle_prob: img = add_speckle_noise(img) elif i == 12: if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) else: print("check the shuffle!") # resize to desired size img = cv2.resize( img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])), interpolation=random.choice([1, 2, 3]), ) # add final JPEG compression noise img = add_JPEG_noise(img) # random crop img, hq = random_crop(img, hq, sf, lq_patchsize) return img, hq if __name__ == "__main__": print("hey") img = util.imread_uint("utils/test.png", 3) print(img) img = util.uint2single(img) print(img) img = img[:448, :448] h = img.shape[0] // 4 print("resizing to", h) sf = 4 deg_fn = partial(degradation_bsrgan_variant, sf=sf) for i in range(20): print(i) img_lq = deg_fn(img) print(img_lq) img_lq_bicubic = albumentations.SmallestMaxSize( max_size=h, interpolation=cv2.INTER_CUBIC )(image=img)["image"] print(img_lq.shape) print("bicubic", img_lq_bicubic.shape) print(img_hq.shape) lq_nearest = cv2.resize( util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), interpolation=0, ) lq_bicubic_nearest = cv2.resize( util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), interpolation=0, ) img_concat = np.concatenate( [lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1 ) util.imsave(img_concat, str(i) + ".png")