from builtins import float from typing import List, Union from pydantic import BaseModel, Field, field_validator, model_validator from typing_extensions import Self from invokeai.app.invocations.baseinvocation import ( BaseInvocation, BaseInvocationOutput, Input, InputField, InvocationContext, OutputField, invocation, invocation_output, ) from invokeai.app.invocations.primitives import ImageField from invokeai.app.invocations.util import validate_begin_end_step, validate_weights from invokeai.app.shared.fields import FieldDescriptions from invokeai.backend.model_manager import BaseModelType, ModelType # LS: Consider moving these two classes into model.py class IPAdapterModelField(BaseModel): key: str = Field(description="Key to the IP-Adapter model") class CLIPVisionModelField(BaseModel): key: str = Field(description="Key to the CLIP Vision image encoder model") class IPAdapterField(BaseModel): image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).") ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.") image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.") weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet") begin_step_percent: float = Field( default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)" ) end_step_percent: float = Field( default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" ) @field_validator("weight") @classmethod def validate_ip_adapter_weight(cls, v: float) -> float: validate_weights(v) return v @model_validator(mode="after") def validate_begin_end_step_percent(self) -> Self: validate_begin_end_step(self.begin_step_percent, self.end_step_percent) return self @invocation_output("ip_adapter_output") class IPAdapterOutput(BaseInvocationOutput): # Outputs ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter") @invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.1") class IPAdapterInvocation(BaseInvocation): """Collects IP-Adapter info to pass to other nodes.""" # Inputs image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).") ip_adapter_model: IPAdapterModelField = InputField( description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1 ) weight: Union[float, List[float]] = InputField( default=1, description="The weight given to the IP-Adapter", title="Weight" ) begin_step_percent: float = InputField( default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)" ) end_step_percent: float = InputField( default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" ) @field_validator("weight") @classmethod def validate_ip_adapter_weight(cls, v: float) -> float: validate_weights(v) return v @model_validator(mode="after") def validate_begin_end_step_percent(self) -> Self: validate_begin_end_step(self.begin_step_percent, self.end_step_percent) return self def invoke(self, context: InvocationContext) -> IPAdapterOutput: # Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model. ip_adapter_info = context.services.model_records.get_model(self.ip_adapter_model.key) image_encoder_model_id = ip_adapter_info.image_encoder_model_id image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip() image_encoder_models = context.services.model_records.search_by_attr( model_name=image_encoder_model_name, base_model=BaseModelType.Any, model_type=ModelType.CLIPVision ) assert len(image_encoder_models) == 1 image_encoder_model = CLIPVisionModelField(key=image_encoder_models[0].key) return IPAdapterOutput( ip_adapter=IPAdapterField( image=self.image, ip_adapter_model=self.ip_adapter_model, image_encoder_model=image_encoder_model, weight=self.weight, begin_step_percent=self.begin_step_percent, end_step_percent=self.end_step_percent, ), )