# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) import numpy as np from typing import Literal from invokeai.app.invocations.primitives import IntegerOutput, FloatOutput from pydantic import validator from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation @invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.0") class AddInvocation(BaseInvocation): """Adds two integer numbers""" a: int = InputField(default=0, description=FieldDescriptions.num_1) b: int = InputField(default=0, description=FieldDescriptions.num_2) def invoke(self, context: InvocationContext) -> IntegerOutput: return IntegerOutput(value=self.a + self.b) @invocation("sub", title="Subtract Integers", tags=["math", "subtract"], category="math", version="1.0.0") class SubtractInvocation(BaseInvocation): """Subtracts two numbers""" a: int = InputField(default=0, description=FieldDescriptions.num_1) b: int = InputField(default=0, description=FieldDescriptions.num_2) def invoke(self, context: InvocationContext) -> IntegerOutput: return IntegerOutput(value=self.a - self.b) @invocation("mul", title="Multiply Integers", tags=["math", "multiply"], category="math", version="1.0.0") class MultiplyInvocation(BaseInvocation): """Multiplies two numbers""" a: int = InputField(default=0, description=FieldDescriptions.num_1) b: int = InputField(default=0, description=FieldDescriptions.num_2) def invoke(self, context: InvocationContext) -> IntegerOutput: return IntegerOutput(value=self.a * self.b) @invocation("div", title="Divide Integers", tags=["math", "divide"], category="math", version="1.0.0") class DivideInvocation(BaseInvocation): """Divides two numbers""" a: int = InputField(default=0, description=FieldDescriptions.num_1) b: int = InputField(default=0, description=FieldDescriptions.num_2) def invoke(self, context: InvocationContext) -> IntegerOutput: return IntegerOutput(value=int(self.a / self.b)) @invocation("rand_int", title="Random Integer", tags=["math", "random"], category="math", version="1.0.0") class RandomIntInvocation(BaseInvocation): """Outputs a single random integer.""" low: int = InputField(default=0, description="The inclusive low value") high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value") def invoke(self, context: InvocationContext) -> IntegerOutput: return IntegerOutput(value=np.random.randint(self.low, self.high)) @invocation("float_to_int", title="Float To Integer", tags=["math", "round", "integer", "float", "convert"], category="math", version="1.0.0") class RoundToMultipleInvocation(BaseInvocation): """Rounds a float number to (a multiple of) an integer.""" value: float = InputField(default=0, description="The value to round") multiple: int = InputField(default=1, ge=1,title="Multiple of", description="The multiple to round to") method: Literal["Nearest", "Floor", "Ceiling", "Truncate"] = InputField(default="Nearest", description="The method to use for rounding") def invoke(self, context: InvocationContext) -> IntegerOutput: if self.method == "Nearest": return IntegerOutput(value=round(self.value / self.multiple) * self.multiple) elif self.method == "Floor": return IntegerOutput(value=np.floor(self.value / self.multiple) * self.multiple) elif self.method == "Ceiling": return IntegerOutput(value=np.ceil(self.value / self.multiple) * self.multiple) else: #self.method == "Truncate" return IntegerOutput(value=int(self.value / self.multiple) * self.multiple) @invocation("round_float", title="Round Float", tags=["math", "round"], category="math", version="1.0.0") class RoundInvocation(BaseInvocation): """Rounds a float to a specified number of decimal places.""" value: float = InputField(default=0, description="The float value") decimals: int = InputField(default=0, description="The number of decimal places") def invoke(self, context: InvocationContext) -> FloatOutput: return FloatOutput(value=round(self.value, self.decimals)) INTEGER_OPERATIONS = Literal[ "Add A+B", "Subtract A-B", "Multiply A*B", "Divide A/B", "Exponentiate A^B", "Modulus A%B", "Absolute Value of A", "Minimum(A,B)", "Maximum(A,B)" ] @invocation( "integer_math", title="Integer Math", tags=[ "math", "integer", "add", "subtract", "multiply", "divide", "modulus", "power", "absolute value", "min", "max" ], category="math", version="1.0.0" ) class IntegerMathInvocation(BaseInvocation): """Performs integer math.""" operation: INTEGER_OPERATIONS = InputField(default="Add A+B", description="The operation to perform") a: int = InputField(default=0, description=FieldDescriptions.num_1) b: int = InputField(default=0, description=FieldDescriptions.num_2) @validator("operation") def no_divide_by_zero(cls, v, values): if v == "Divide A/B" and values["b"] == 0: raise ValueError("Cannot divide by zero") elif v == "Modulus A%B" and values["b"] == 0: raise ValueError("Cannot divide by zero") elif v == "Exponentiate A^B" and values["b"] < 0: raise ValueError("Result of exponentiation is not an integer") return v def invoke(self, context: InvocationContext) -> IntegerOutput: #Python doesn't support switch statements until 3.10, but InvokeAI supports back to 3.9 if self.operation == "Add A+B": return IntegerOutput(value=self.a + self.b) elif self.operation == "Subtract A-B": return IntegerOutput(value=self.a - self.b) elif self.operation == "Multiply A*B": return IntegerOutput(value=self.a * self.b) elif self.operation == "Divide A/B": return IntegerOutput(value=int(self.a / self.b)) elif self.operation == "Exponentiate A^B": return IntegerOutput(value=self.a ** self.b) elif self.operation == "Modulus A%B": return IntegerOutput(value=self.a % self.b) elif self.operation == "Absolute Value of A": return IntegerOutput(value=abs(self.a)) elif self.operation == "Minimum(A,B)": return IntegerOutput(value=min(self.a, self.b)) else: #self.operation == "Maximum(A,B)": return IntegerOutput(value=max(self.a, self.b)) FLOAT_OPERATIONS = Literal[ "Add A+B", "Subtract A-B", "Multiply A*B", "Divide A/B", "Exponentiate A^B", "Absolute Value of A", "Minimum(A,B)", "Maximum(A,B)" ] @invocation( "float_math", title="Float Math", tags=[ "math", "float", "add", "subtract", "multiply", "divide", "power", "root", "absolute value", "min", "max" ], category="math", version="1.0.0" ) class FloatMathInvocation(BaseInvocation): """Performs floating point math.""" operation: FLOAT_OPERATIONS = InputField(default="Add A+B", description="The operation to perform") a: float = InputField(default=0, description=FieldDescriptions.num_1) b: float = InputField(default=0, description=FieldDescriptions.num_2) @validator("operation") def no_divide_by_zero(cls, v, values): if v == "Divide A/B" and values["b"] == 0: raise ValueError("Cannot divide by zero") elif v == "Exponentiate A^B" and values["a"] == 0 and values["b"] < 0: raise ValueError("Cannot raise zero to a negative power") elif v == "Exponentiate A^B" and type(values["a"]**values["b"]) == complex: raise ValueError("Root operation resulted in a complex number") return v def invoke(self, context: InvocationContext) -> FloatOutput: #Python doesn't support switch statements until 3.10, but InvokeAI supports back to 3.9 if self.operation == "Add A+B": return FloatOutput(value=self.a + self.b) elif self.operation == "Subtract A-B": return FloatOutput(value=self.a - self.b) elif self.operation == "Multiply A*B": return FloatOutput(value=self.a * self.b) elif self.operation == "Divide A/B": return FloatOutput(value=self.a / self.b) elif self.operation == "Exponentiate A^B": return FloatOutput(value=self.a ** self.b) elif self.operation == "Square Root of A": return FloatOutput(value=np.sqrt(self.a)) elif self.operation == "Absolute Value of A": return FloatOutput(value=abs(self.a)) elif self.operation == "Minimum(A,B)": return FloatOutput(value=min(self.a, self.b)) else: #self.operation == "Maximum(A,B)": return FloatOutput(value=max(self.a, self.b))