import torch import warnings import os import sys import numpy as np from PIL import Image from scripts.dream import create_argv_parser arg_parser = create_argv_parser() opt = arg_parser.parse_args() def run_gfpgan(image, strength, seed, upsampler_scale=4): print(f'>> GFPGAN - Restoring Faces for image seed:{seed}') gfpgan = None with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=UserWarning) model_path = os.path.join(opt.gfpgan_dir, opt.gfpgan_model_path) gfpgan_model_exists = os.path.isfile(model_path) try: if not gfpgan_model_exists: raise Exception('GFPGAN model not found at path ' + model_path) sys.path.append(os.path.abspath(opt.gfpgan_dir)) from gfpgan import GFPGANer bg_upsampler = _load_gfpgan_bg_upsampler( opt.gfpgan_bg_upsampler, upsampler_scale, opt.gfpgan_bg_tile ) gfpgan = GFPGANer( model_path=model_path, upscale=upsampler_scale, arch='clean', channel_multiplier=2, bg_upsampler=bg_upsampler, ) except Exception: import traceback print('>> Error loading GFPGAN:', file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) if gfpgan is None: print( f'>> WARNING: GFPGAN not initialized.' ) print( f'>> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth to {model_path}, \nor change GFPGAN directory with --gfpgan_dir.' ) return image image = image.convert('RGB') cropped_faces, restored_faces, restored_img = gfpgan.enhance( np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True, ) res = Image.fromarray(restored_img) if strength < 1.0: # Resize the image to the new image if the sizes have changed if restored_img.size != image.size: image = image.resize(res.size) res = Image.blend(image, res, strength) if torch.cuda.is_available(): torch.cuda.empty_cache() gfpgan = None return res def _load_gfpgan_bg_upsampler(bg_upsampler, upsampler_scale, bg_tile=400): if bg_upsampler == 'realesrgan': if not torch.cuda.is_available(): # CPU or MPS on M1 use_half_precision = False else: use_half_precision = True model_path = { 2: 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', 4: 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth', } if upsampler_scale not in model_path: return None from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan import RealESRGANer if upsampler_scale == 4: model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4, ) if upsampler_scale == 2: model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2, ) bg_upsampler = RealESRGANer( scale=upsampler_scale, model_path=model_path[upsampler_scale], model=model, tile=bg_tile, tile_pad=10, pre_pad=0, half=use_half_precision, ) else: bg_upsampler = None return bg_upsampler def real_esrgan_upscale(image, strength, upsampler_scale, seed): print( f'>> Real-ESRGAN Upscaling seed:{seed} : scale:{upsampler_scale}x' ) with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=UserWarning) try: upsampler = _load_gfpgan_bg_upsampler( opt.gfpgan_bg_upsampler, upsampler_scale, opt.gfpgan_bg_tile ) except Exception: import traceback print('>> Error loading Real-ESRGAN:', file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) output, img_mode = upsampler.enhance( np.array(image, dtype=np.uint8), outscale=upsampler_scale, alpha_upsampler=opt.gfpgan_bg_upsampler, ) res = Image.fromarray(output) if strength < 1.0: # Resize the image to the new image if the sizes have changed if output.size != image.size: image = image.resize(res.size) res = Image.blend(image, res, strength) if torch.cuda.is_available(): torch.cuda.empty_cache() upsampler = None return res