import numpy as np import torch from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata from invokeai.app.invocations.primitives import MaskOutput @invocation( "rectangle_mask", title="Create Rectangle Mask", tags=["conditioning"], category="conditioning", version="1.0.1", ) class RectangleMaskInvocation(BaseInvocation, WithMetadata): """Create a rectangular mask.""" width: int = InputField(description="The width of the entire mask.") height: int = InputField(description="The height of the entire mask.") x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).") y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).") rectangle_width: int = InputField(description="The width of the rectangular masked region.") rectangle_height: int = InputField(description="The height of the rectangular masked region.") def invoke(self, context: InvocationContext) -> MaskOutput: mask = torch.zeros((1, self.height, self.width), dtype=torch.bool) mask[ :, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width ] = True mask_tensor_name = context.tensors.save(mask) return MaskOutput( mask=TensorField(tensor_name=mask_tensor_name), width=self.width, height=self.height, ) @invocation( "alpha_mask_to_tensor", title="Alpha Mask to Tensor", tags=["conditioning"], category="conditioning", version="1.0.0", classification=Classification.Beta, ) class AlphaMaskToTensorInvocation(BaseInvocation): """Convert a mask image to a tensor. Opaque regions are 1 and transparent regions are 0.""" image: ImageField = InputField(description="The mask image to convert.") invert: bool = InputField(default=False, description="Whether to invert the mask.") def invoke(self, context: InvocationContext) -> MaskOutput: image = context.images.get_pil(self.image.image_name) mask = torch.zeros((1, image.height, image.width), dtype=torch.bool) if self.invert: mask[0] = torch.tensor(np.array(image)[:, :, 3] == 0, dtype=torch.bool) else: mask[0] = torch.tensor(np.array(image)[:, :, 3] > 0, dtype=torch.bool) return MaskOutput( mask=TensorField(tensor_name=context.tensors.save(mask)), height=mask.shape[1], width=mask.shape[2], ) @invocation( "invert_tensor_mask", title="Invert Tensor Mask", tags=["conditioning"], category="conditioning", version="1.0.0", classification=Classification.Beta, ) class InvertTensorMaskInvocation(BaseInvocation): """Inverts a tensor mask.""" mask: TensorField = InputField(description="The tensor mask to convert.") def invoke(self, context: InvocationContext) -> MaskOutput: mask = context.tensors.load(self.mask.tensor_name) inverted = ~mask return MaskOutput( mask=TensorField(tensor_name=context.tensors.save(inverted)), height=inverted.shape[1], width=inverted.shape[2], ) @invocation( "image_mask_to_tensor", title="Image Mask to Tensor", tags=["conditioning"], category="conditioning", version="1.0.0", ) class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata): """Convert a mask image to a tensor. Converts the image to grayscale and uses thresholding at the specified value.""" image: ImageField = InputField(description="The mask image to convert.") cutoff: int = InputField(ge=0, le=255, description="Cutoff (<)", default=128) invert: bool = InputField(default=False, description="Whether to invert the mask.") def invoke(self, context: InvocationContext) -> MaskOutput: image = context.images.get_pil(self.image.image_name, mode="L") mask = torch.zeros((1, image.height, image.width), dtype=torch.bool) if self.invert: mask[0] = torch.tensor(np.array(image)[:, :] >= self.cutoff, dtype=torch.bool) else: mask[0] = torch.tensor(np.array(image)[:, :] < self.cutoff, dtype=torch.bool) return MaskOutput( mask=TensorField(tensor_name=context.tensors.save(mask)), height=mask.shape[1], width=mask.shape[2], )