#!/usr/bin/env python """ Simple script to generate a file of InvokeAI prompts and settings that scan across steps and other parameters. """ import re import pydoc import shutil import sys import argparse from dataclasses import dataclass from subprocess import Popen, PIPE from itertools import product from io import TextIOBase from pathlib import Path from typing import Iterable, List, Union from omegaconf import OmegaConf, dictconfig, listconfig def expand_prompts(template_file: Path, run_invoke: bool=False, invoke_model: str=None, invoke_outdir: Path=None, ): ''' :param template_file: A YAML file containing templated prompts and args :param run_invoke: A boolean which if True will pass expanded prompts to invokeai CLI :param invoke_model: Name of the model to load when run_invoke is true; otherwise uses default :param invoke_outdir: Directory for outputs when run_invoke is true; otherwise uses default ''' conf = OmegaConf.load(template_file) try: if run_invoke: invokeai_args = [shutil.which('invokeai')] if invoke_model: invokeai_args.extend(('--model',invoke_model)) if invoke_outdir: invokeai_args.extend(('--outdir',invoke_outdir)) print(f'Calling invokeai with arguments {invokeai_args}',file=sys.stderr) process = Popen(invokeai_args, stdin=PIPE, text=True) with process.stdin as fh: _do_expand(conf,file=fh) process.wait() else: _do_expand(conf) except KeyboardInterrupt: process.kill() def main(): parser = argparse.ArgumentParser( description=HELP, ) parser.add_argument( 'template_file', type=Path, nargs='?', help='path to a template file, use --example to generate an example file' ) parser.add_argument( '--example', action='store_true', default=False, help=f'Print an example template file. Use "{sys.argv[0]} --example > example.yaml" to save output to a file' ) parser.add_argument( '--instructions', '-i', dest='instructions', action='store_true', default=False, help=f'Print verbose instructions.' ) parser.add_argument( '--invoke', action='store_true', help='Execute invokeai using specified optional --model and --outdir' ) parser.add_argument( '--model', help='Feed the generated prompts to the invokeai CLI using the indicated model. Will be overriden by a model: section in template file.' ) parser.add_argument( '--outdir', type=Path, help='Write images and log into indicated directory' ) opt = parser.parse_args() if opt.example: print(EXAMPLE_TEMPLATE_FILE) sys.exit(0) if opt.instructions: pydoc.pager(INSTRUCTIONS) sys.exit(0) if not opt.template_file: parser.print_help() sys.exit(-1) expand_prompts( template_file = opt.template_file, run_invoke = opt.invoke, invoke_model = opt.model, invoke_outdir = opt.outdir ) def _do_expand(conf: OmegaConf, file: TextIOBase=sys.stdout): models = expand_values(conf.get("model")) steps = expand_values(conf.get("steps")) or [30] cfgs = expand_values(conf.get("cfg")) or [7.5] samplers = expand_values(conf.get("sampler")) or ["ddim"] seeds = expand_values(conf.get("seed")) or [0] prompts = expand_prompt(conf.get("prompt")) or ["banana sushi"] dimensions = expand_prompt(conf.get("dimensions")) or ['512x512'] cross_product = product(*[models, seeds, prompts, samplers, cfgs, steps, dimensions]) previous_model = None for p in cross_product: (model, seed, prompt, sampler, cfg, step, dimensions) = tuple(p) (width, height) = dimensions.split('x') if previous_model != model: previous_model = model print(f'!switch {model}', file=file) print(f'"{prompt}" -S{seed} -A{sampler} -C{cfg} -s{step} -W{width} -H{height}',file=file) def expand_prompt( stanza: str | dict | listconfig.ListConfig | dictconfig.DictConfig, ) -> list | range: if not stanza: return None if isinstance(stanza, listconfig.ListConfig): return stanza if isinstance(stanza, str): return [stanza] if not isinstance(stanza, dictconfig.DictConfig): raise ValueError(f"Unrecognized template: {stanza}") if not (template := stanza.get("template")): raise KeyError('"prompt" section must contain a "template" definition') fragment_labels = re.findall("{([^{}]+?)}", template) if len(fragment_labels) == 0: return [template] fragments = [[{x: y} for y in stanza.get(x)] for x in fragment_labels] dicts = merge(product(*fragments)) return [template.format(**x) for x in dicts] def merge(dicts: Iterable) -> List[dict]: result = list() for x in dicts: to_merge = dict() for item in x: to_merge = to_merge | item result.append(to_merge) return result def expand_values(stanza: str | dict | listconfig.ListConfig) -> list | range: if not stanza: return None if isinstance(stanza, listconfig.ListConfig): return stanza elif match := re.match("^(\d+);(\d+)(;(\d+))?", str(stanza)): return range(int(match.group(1)), 1+int(match.group(2)), int(match.group(4)) or 1) else: return [stanza] HELP = f""" This script takes a prompt template file that contains multiple alternative values for the prompt and its generation arguments (such as steps). It then expands out the prompts using all combinations of arguments and either prints them to the terminal's standard output, or feeds the prompts directly to the invokeai command-line interface. Call this script again with --instructions (-i) for verbose instructions. """ INSTRUCTIONS = f""" == INTRODUCTION == This script takes a prompt template file that contains multiple alternative values for the prompt and its generation arguments (such as steps). It then expands out the prompts using all combinations of arguments and either prints them to the terminal's standard output, or feeds the prompts directly to the invokeai command-line interface. If the optional --invoke argument is provided, then the generated prompts will be fed directly to invokeai for image generation. You will likely want to add the --outdir option in order to save the image files to their own folder. {sys.argv[0]} --invoke --outdir=/tmp/outputs my_template.yaml If --invoke isn't specified, the expanded prompts will be printed to output. You can capture them to a file for inspection and editing this way: {sys.argv[0]} my_template.yaml > prompts.txt And then feed them to invokeai this way: invokeai --outdir=/tmp/outputs < prompts.txt Note that after invokeai finishes processing the list of prompts, the output directory will contain a markdown file named `log.md` containing annotated images. You can open this file using an e-book reader such as the cross-platform Calibre eBook reader (https://calibre-ebook.com/). == FORMAT OF THE TEMPLATES FILE == This will generate an example template file that you can get started with: {sys.argv[0]} --example > example.yaml An excerpt from the top of this file looks like this: model: - stable-diffusion-1.5 - stable-diffusion-2.1-base steps: 30:50:1 # start steps at 30 and go up to 50, incrementing by 1 each time seed: 50 # fixed constant, seed=50 cfg: # list of CFG values to try - 7 - 8 - 12 prompt: a walk in the park # constant value In more detail, the template file can have any of the following sections: - model: - steps: - seed: - cfg: - sampler: - prompt: - Each section can have a constant value such as this: steps: 50 - Or a range of numeric values in the format: steps: ;; (note semicolon, not colon!) - Or a list of values in the format: - value1 - value2 - value3 The "prompt:" section is special. It can accept a constant value: prompt: a walk in the woods in the style of donatello Or it can accept a list of prompts: prompt: - a walk in the woods - a walk on the beach Or it can accept a templated list of prompts. These allow you to define a series of phrases, each of which is a list. You then combine them together into a prompt template in this way: prompt: style: - greg rutkowski - gustav klimt - renoir - donetello subject: - sunny meadow in the mountains - gathering storm in the mountains template: a {{subject}} in the style of {{style}} In the example above, the phrase names "style" and "subject" are examples only. You can use whatever you like. However, the "template:" field is required. The output will be: "a sunny meadow in the mountains in the style of greg rutkowski" "a sunny meadow in the mountains in the style of gustav klimt" ... "a gathering storm in the mountains in the style of donetello" """ EXAMPLE_TEMPLATE_FILE=""" model: stable-diffusion-1.5 steps: 30;50;10 seed: 50 dimensions: 512x512 cfg: - 7 - 12 sampler: - k_euler_a - k_lms prompt: style: - greg rutkowski - gustav klimt location: - the mountains - a desert object: - luxurious dwelling - crude tent template: a {object} in {location}, in the style of {style} """ if __name__ == "__main__": main()