# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779) from contextlib import ExitStack from typing import List, Literal, Optional, Union import re import inspect from pydantic import BaseModel, Field, validator import torch import numpy as np from diffusers import ControlNetModel, DPMSolverMultistepScheduler from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers import SchedulerMixin as Scheduler from ..models.image import ImageCategory, ImageField, ResourceOrigin from ...backend.model_management.lora import ONNXModelPatcher from .baseinvocation import (BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext) from .compel import ConditioningField from .controlnet_image_processors import ControlField from .image import ImageOutput from .model import ModelInfo, UNetField, VaeField from invokeai.backend import BaseModelType, ModelType, SubModelType from .model import ClipField from .latent import LatentsField, LatentsOutput, build_latents_output, get_scheduler, SAMPLER_NAME_VALUES from .compel import CompelOutput ORT_TO_NP_TYPE = { "tensor(bool)": np.bool_, "tensor(int8)": np.int8, "tensor(uint8)": np.uint8, "tensor(int16)": np.int16, "tensor(uint16)": np.uint16, "tensor(int32)": np.int32, "tensor(uint32)": np.uint32, "tensor(int64)": np.int64, "tensor(uint64)": np.uint64, "tensor(float16)": np.float16, "tensor(float)": np.float32, "tensor(double)": np.float64, } class ONNXPromptInvocation(BaseInvocation): type: Literal["prompt_onnx"] = "prompt_onnx" prompt: str = Field(default="", description="Prompt") clip: ClipField = Field(None, description="Clip to use") def invoke(self, context: InvocationContext) -> CompelOutput: tokenizer_info = context.services.model_manager.get_model( **self.clip.tokenizer.dict(), ) text_encoder_info = context.services.model_manager.get_model( **self.clip.text_encoder.dict(), ) with tokenizer_info as orig_tokenizer,\ text_encoder_info as text_encoder,\ ExitStack() as stack: loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.clip.loras] ti_list = [] for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt): name = trigger[1:-1] try: ti_list.append( stack.enter_context( context.services.model_manager.get_model( model_name=name, base_model=self.clip.text_encoder.base_model, model_type=ModelType.TextualInversion, ) ) ) except Exception: #print(e) #import traceback #print(traceback.format_exc()) print(f"Warn: trigger: \"{trigger}\" not found") with ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras),\ ONNXModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager): text_encoder.create_session() text_inputs = tokenizer( self.prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids """ untruncated_ids = tokenizer(prompt, padding="max_length", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) """ prompt_embeds = text_encoder(input_ids=text_input_ids.astype(np.int32))[0] text_encoder.release_session() conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning" # TODO: hacky but works ;D maybe rename latents somehow? context.services.latents.save(conditioning_name, (prompt_embeds, None)) return CompelOutput( conditioning=ConditioningField( conditioning_name=conditioning_name, ), ) # Text to image class ONNXTextToLatentsInvocation(BaseInvocation): """Generates latents from conditionings.""" type: Literal["t2l_onnx"] = "t2l_onnx" # Inputs # fmt: off positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation") negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation") noise: Optional[LatentsField] = Field(description="The noise to use") steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" ) unet: UNetField = Field(default=None, description="UNet submodel") #control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use") #seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) #seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'") # fmt: on @validator("cfg_scale") def ge_one(cls, v): """validate that all cfg_scale values are >= 1""" if isinstance(v, list): for i in v: if i < 1: raise ValueError('cfg_scale must be greater than 1') else: if v < 1: raise ValueError('cfg_scale must be greater than 1') return v # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents"], "type_hints": { "model": "model", # "cfg_scale": "float", "cfg_scale": "number" } }, } def invoke(self, context: InvocationContext) -> LatentsOutput: c, _ = context.services.latents.get(self.positive_conditioning.conditioning_name) uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name) if isinstance(c, torch.Tensor): c = c.cpu().numpy() if isinstance(uc, torch.Tensor): uc = uc.cpu().numpy() prompt_embeds = np.concatenate([uc, c]) latents = context.services.latents.get(self.noise.latents_name) if isinstance(latents, torch.Tensor): latents = latents.cpu().numpy() # TODO: better execution device handling latents = latents.astype(np.float32) # get the initial random noise unless the user supplied it do_classifier_free_guidance = True #latents_dtype = prompt_embeds.dtype #latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8) #if latents.shape != latents_shape: # raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") scheduler = get_scheduler( context=context, scheduler_info=self.unet.scheduler, scheduler_name=self.scheduler, ) scheduler.set_timesteps(self.steps) latents = latents * np.float64(scheduler.init_noise_sigma) extra_step_kwargs = dict() if "eta" in set(inspect.signature(scheduler.step).parameters.keys()): extra_step_kwargs.update( eta=0.0, ) unet_info = context.services.model_manager.get_model(**self.unet.unet.dict()) with unet_info as unet,\ ExitStack() as stack: loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras] with ONNXModelPatcher.apply_lora_unet(unet, loras): # TODO: unet.create_session() timestep_dtype = next( (input.type for input in unet.session.get_inputs() if input.name == "timestep"), "tensor(float)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] from tqdm import tqdm for i in tqdm(range(len(scheduler.timesteps))): t = scheduler.timesteps[i] # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) latent_model_input = latent_model_input.cpu().numpy() # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds) noise_pred = noise_pred[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 scheduler_output = scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs ) latents = scheduler_output.prev_sample.numpy() # call the callback, if provided #if callback is not None and i % callback_steps == 0: # callback(i, t, latents) unet.release_session() torch.cuda.empty_cache() name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.save(name, latents) return build_latents_output(latents_name=name, latents=latents) @staticmethod def numpy_to_pil(images): """ Convert a numpy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [Image.fromarray(image) for image in images] return pil_images # Latent to image class ONNXLatentsToImageInvocation(BaseInvocation): """Generates an image from latents.""" type: Literal["l2i_onnx"] = "l2i_onnx" # Inputs latents: Optional[LatentsField] = Field(description="The latents to generate an image from") vae: VaeField = Field(default=None, description="Vae submodel") #tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "image"], }, } def invoke(self, context: InvocationContext) -> ImageOutput: latents = context.services.latents.get(self.latents.latents_name) if self.vae.vae.submodel != SubModelType.VaeDecoder: raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}") vae_info = context.services.model_manager.get_model( **self.vae.vae.dict(), ) # clear memory as vae decode can request a lot torch.cuda.empty_cache() with vae_info as vae: vae.create_session() latents = 1 / 0.18215 * latents # image = self.vae_decoder(latent_sample=latents)[0] # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [vae(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] ) image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1)) image = VaeImageProcessor.numpy_to_pil(image)[0] vae.release_session() torch.cuda.empty_cache() image_dto = context.services.images.create( image=image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ONNXModelLoaderOutput(BaseInvocationOutput): """Model loader output""" #fmt: off type: Literal["model_loader_output_onnx"] = "model_loader_output_onnx" unet: UNetField = Field(default=None, description="UNet submodel") clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels") vae_decoder: VaeField = Field(default=None, description="Vae submodel") vae_encoder: VaeField = Field(default=None, description="Vae submodel") #fmt: on class ONNXSD1ModelLoaderInvocation(BaseInvocation): """Loading submodels of selected model.""" type: Literal["sd1_model_loader_onnx"] = "sd1_model_loader_onnx" model_name: str = Field(default="", description="Model to load") # TODO: precision? # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["model", "loader"], "type_hints": { "model_name": "model" # TODO: rename to model_name? } }, } def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput: model_name = "stable-diffusion-v1-5" base_model = BaseModelType.StableDiffusion1 # TODO: not found exceptions if not context.services.model_manager.model_exists( model_name=model_name, base_model=BaseModelType.StableDiffusion1, model_type=ModelType.ONNX, ): raise Exception(f"Unkown model name: {model_name}!") return ONNXModelLoaderOutput( unet=UNetField( unet=ModelInfo( model_name=model_name, base_model=base_model, model_type=ModelType.ONNX, submodel=SubModelType.UNet, ), scheduler=ModelInfo( model_name=model_name, base_model=base_model, model_type=ModelType.ONNX, submodel=SubModelType.Scheduler, ), loras=[], ), clip=ClipField( tokenizer=ModelInfo( model_name=model_name, base_model=base_model, model_type=ModelType.ONNX, submodel=SubModelType.Tokenizer, ), text_encoder=ModelInfo( model_name=model_name, base_model=base_model, model_type=ModelType.ONNX, submodel=SubModelType.TextEncoder, ), loras=[], ), vae_decoder=VaeField( vae=ModelInfo( model_name=model_name, base_model=base_model, model_type=ModelType.ONNX, submodel=SubModelType.VaeDecoder, ), ), vae_encoder=VaeField( vae=ModelInfo( model_name=model_name, base_model=base_model, model_type=ModelType.ONNX, submodel=SubModelType.VaeEncoder, ), ) )