# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) from functools import partial from typing import Literal, Optional, Union import numpy as np from torch import Tensor from pydantic import BaseModel, Field from invokeai.app.models.image import ImageField, ImageType from invokeai.app.invocations.util.choose_model import choose_model from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from .image import ImageOutput, build_image_output from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator from ...backend.stable_diffusion import PipelineIntermediateState from ..util.step_callback import stable_diffusion_step_callback SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())] class SDImageInvocation(BaseModel): """Helper class to provide all Stable Diffusion raster image invocations with additional config""" # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["stable-diffusion", "image"], "type_hints": { "model": "model", }, }, } # Text to image class TextToImageInvocation(BaseInvocation, SDImageInvocation): """Generates an image using text2img.""" type: Literal["txt2img"] = "txt2img" # Inputs # TODO: consider making prompt optional to enable providing prompt through a link # fmt: off prompt: Optional[str] = Field(description="The prompt to generate an image from") seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", ) steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", ) height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", ) cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" ) seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) model: str = Field(default="", description="The model to use (currently ignored)") progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", ) # fmt: on # TODO: pass this an emitter method or something? or a session for dispatching? def dispatch_progress( self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState, ) -> None: stable_diffusion_step_callback( context=context, intermediate_state=intermediate_state, node=self.dict(), source_node_id=source_node_id, ) def invoke(self, context: InvocationContext) -> ImageOutput: # Handle invalid model parameter model = choose_model(context.services.model_manager, self.model) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get( context.graph_execution_state_id ) source_node_id = graph_execution_state.prepared_source_mapping[self.id] outputs = Txt2Img(model).generate( prompt=self.prompt, step_callback=partial(self.dispatch_progress, context, source_node_id), **self.dict( exclude={"prompt"} ), # Shorthand for passing all of the parameters above manually ) # Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object # each time it is called. We only need the first one. generate_output = next(outputs) # Results are image and seed, unwrap for now and ignore the seed # TODO: pre-seed? # TODO: can this return multiple results? Should it? image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save( image_type, image_name, generate_output.image, metadata ) return build_image_output( image_type=image_type, image_name=image_name, image=generate_output.image, ) class ImageToImageInvocation(TextToImageInvocation): """Generates an image using img2img.""" type: Literal["img2img"] = "img2img" # Inputs image: Union[ImageField, None] = Field(description="The input image") strength: float = Field( default=0.75, gt=0, le=1, description="The strength of the original image" ) fit: bool = Field( default=True, description="Whether or not the result should be fit to the aspect ratio of the input image", ) def dispatch_progress( self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState, ) -> None: stable_diffusion_step_callback( context=context, intermediate_state=intermediate_state, node=self.dict(), source_node_id=source_node_id, ) def invoke(self, context: InvocationContext) -> ImageOutput: image = ( None if self.image is None else context.services.images.get( self.image.image_type, self.image.image_name ) ) mask = None if self.fit: image = image.resize((self.width, self.height)) # Handle invalid model parameter model = choose_model(context.services.model_manager, self.model) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get( context.graph_execution_state_id ) source_node_id = graph_execution_state.prepared_source_mapping[self.id] outputs = Img2Img(model).generate( prompt=self.prompt, init_image=image, init_mask=mask, step_callback=partial(self.dispatch_progress, context, source_node_id), **self.dict( exclude={"prompt", "image", "mask"} ), # Shorthand for passing all of the parameters above manually ) # Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object # each time it is called. We only need the first one. generator_output = next(outputs) result_image = generator_output.image # Results are image and seed, unwrap for now and ignore the seed # TODO: pre-seed? # TODO: can this return multiple results? Should it? image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save(image_type, image_name, result_image, metadata) return build_image_output( image_type=image_type, image_name=image_name, image=result_image, ) class InpaintInvocation(ImageToImageInvocation): """Generates an image using inpaint.""" type: Literal["inpaint"] = "inpaint" # Inputs mask: Union[ImageField, None] = Field(description="The mask") inpaint_replace: float = Field( default=0.0, ge=0.0, le=1.0, description="The amount by which to replace masked areas with latent noise", ) def dispatch_progress( self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState, ) -> None: stable_diffusion_step_callback( context=context, intermediate_state=intermediate_state, node=self.dict(), source_node_id=source_node_id, ) def invoke(self, context: InvocationContext) -> ImageOutput: image = ( None if self.image is None else context.services.images.get( self.image.image_type, self.image.image_name ) ) mask = ( None if self.mask is None else context.services.images.get(self.mask.image_type, self.mask.image_name) ) # Handle invalid model parameter model = choose_model(context.services.model_manager, self.model) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get( context.graph_execution_state_id ) source_node_id = graph_execution_state.prepared_source_mapping[self.id] outputs = Inpaint(model).generate( prompt=self.prompt, init_img=image, init_mask=mask, step_callback=partial(self.dispatch_progress, context, source_node_id), **self.dict( exclude={"prompt", "image", "mask"} ), # Shorthand for passing all of the parameters above manually ) # Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object # each time it is called. We only need the first one. generator_output = next(outputs) result_image = generator_output.image # Results are image and seed, unwrap for now and ignore the seed # TODO: pre-seed? # TODO: can this return multiple results? Should it? image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save(image_type, image_name, result_image, metadata) return build_image_output( image_type=image_type, image_name=image_name, image=result_image, )