# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) import io from typing import Literal, Optional import numpy from PIL import Image, ImageFilter, ImageOps from pydantic import BaseModel, Field from ..models.image import ImageField, ImageType from .baseinvocation import ( BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig, ) class PILInvocationConfig(BaseModel): """Helper class to provide all PIL invocations with additional config""" class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["PIL", "image"], }, } class ImageOutput(BaseInvocationOutput): """Base class for invocations that output an image""" # fmt: off type: Literal["image_output"] = "image_output" image: ImageField = Field(default=None, description="The output image") width: int = Field(description="The width of the image in pixels") height: int = Field(description="The height of the image in pixels") # fmt: on class Config: schema_extra = {"required": ["type", "image", "width", "height"]} def build_image_output( image_type: ImageType, image_name: str, image: Image.Image ) -> ImageOutput: """Builds an ImageOutput and its ImageField""" image_field = ImageField( image_name=image_name, image_type=image_type, ) return ImageOutput( image=image_field, width=image.width, height=image.height, ) class MaskOutput(BaseInvocationOutput): """Base class for invocations that output a mask""" # fmt: off type: Literal["mask"] = "mask" mask: ImageField = Field(default=None, description="The output mask") # fmt: on class Config: schema_extra = { "required": [ "type", "mask", ] } class LoadImageInvocation(BaseInvocation): """Load an image and provide it as output.""" # fmt: off type: Literal["load_image"] = "load_image" # Inputs image_type: ImageType = Field(description="The type of the image") image_name: str = Field(description="The name of the image") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get(self.image_type, self.image_name) return build_image_output( image_type=self.image_type, image_name=self.image_name, image=image, ) class ShowImageInvocation(BaseInvocation): """Displays a provided image, and passes it forward in the pipeline.""" type: Literal["show_image"] = "show_image" # Inputs image: ImageField = Field(default=None, description="The image to show") def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get( self.image.image_type, self.image.image_name ) if image: image.show() # TODO: how to handle failure? return build_image_output( image_type=self.image.image_type, image_name=self.image.image_name, image=image, ) class CropImageInvocation(BaseInvocation, PILInvocationConfig): """Crops an image to a specified box. The box can be outside of the image.""" # fmt: off type: Literal["crop"] = "crop" # Inputs image: ImageField = Field(default=None, description="The image to crop") x: int = Field(default=0, description="The left x coordinate of the crop rectangle") y: int = Field(default=0, description="The top y coordinate of the crop rectangle") width: int = Field(default=512, gt=0, description="The width of the crop rectangle") height: int = Field(default=512, gt=0, description="The height of the crop rectangle") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get( self.image.image_type, self.image.image_name ) image_crop = Image.new( mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0) ) image_crop.paste(image, (-self.x, -self.y)) image_type = ImageType.INTERMEDIATE image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save(image_type, image_name, image_crop, metadata) return build_image_output( image_type=image_type, image_name=image_name, image=image_crop, ) class PasteImageInvocation(BaseInvocation, PILInvocationConfig): """Pastes an image into another image.""" # fmt: off type: Literal["paste"] = "paste" # Inputs base_image: ImageField = Field(default=None, description="The base image") image: ImageField = Field(default=None, description="The image to paste") mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting") x: int = Field(default=0, description="The left x coordinate at which to paste the image") y: int = Field(default=0, description="The top y coordinate at which to paste the image") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: base_image = context.services.images.get( self.base_image.image_type, self.base_image.image_name ) image = context.services.images.get( self.image.image_type, self.image.image_name ) mask = ( None if self.mask is None else ImageOps.invert( context.services.images.get(self.mask.image_type, self.mask.image_name) ) ) # TODO: probably shouldn't invert mask here... should user be required to do it? min_x = min(0, self.x) min_y = min(0, self.y) max_x = max(base_image.width, image.width + self.x) max_y = max(base_image.height, image.height + self.y) new_image = Image.new( mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0) ) new_image.paste(base_image, (abs(min_x), abs(min_y))) new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask) image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save(image_type, image_name, new_image, metadata) return build_image_output( image_type=image_type, image_name=image_name, image=new_image, ) class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig): """Extracts the alpha channel of an image as a mask.""" # fmt: off type: Literal["tomask"] = "tomask" # Inputs image: ImageField = Field(default=None, description="The image to create the mask from") invert: bool = Field(default=False, description="Whether or not to invert the mask") # fmt: on def invoke(self, context: InvocationContext) -> MaskOutput: image = context.services.images.get( self.image.image_type, self.image.image_name ) image_mask = image.split()[-1] if self.invert: image_mask = ImageOps.invert(image_mask) image_type = ImageType.INTERMEDIATE image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save(image_type, image_name, image_mask, metadata) return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name)) class BlurInvocation(BaseInvocation, PILInvocationConfig): """Blurs an image""" # fmt: off type: Literal["blur"] = "blur" # Inputs image: ImageField = Field(default=None, description="The image to blur") radius: float = Field(default=8.0, ge=0, description="The blur radius") blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get( self.image.image_type, self.image.image_name ) blur = ( ImageFilter.GaussianBlur(self.radius) if self.blur_type == "gaussian" else ImageFilter.BoxBlur(self.radius) ) blur_image = image.filter(blur) image_type = ImageType.INTERMEDIATE image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save(image_type, image_name, blur_image, metadata) return build_image_output( image_type=image_type, image_name=image_name, image=blur_image ) class LerpInvocation(BaseInvocation, PILInvocationConfig): """Linear interpolation of all pixels of an image""" # fmt: off type: Literal["lerp"] = "lerp" # Inputs image: ImageField = Field(default=None, description="The image to lerp") min: int = Field(default=0, ge=0, le=255, description="The minimum output value") max: int = Field(default=255, ge=0, le=255, description="The maximum output value") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get( self.image.image_type, self.image.image_name ) image_arr = numpy.asarray(image, dtype=numpy.float32) / 255 image_arr = image_arr * (self.max - self.min) + self.max lerp_image = Image.fromarray(numpy.uint8(image_arr)) image_type = ImageType.INTERMEDIATE image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save(image_type, image_name, lerp_image, metadata) return build_image_output( image_type=image_type, image_name=image_name, image=lerp_image ) class InverseLerpInvocation(BaseInvocation, PILInvocationConfig): """Inverse linear interpolation of all pixels of an image""" # fmt: off type: Literal["ilerp"] = "ilerp" # Inputs image: ImageField = Field(default=None, description="The image to lerp") min: int = Field(default=0, ge=0, le=255, description="The minimum input value") max: int = Field(default=255, ge=0, le=255, description="The maximum input value") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get( self.image.image_type, self.image.image_name ) image_arr = numpy.asarray(image, dtype=numpy.float32) image_arr = ( numpy.minimum( numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1 ) * 255 ) ilerp_image = Image.fromarray(numpy.uint8(image_arr)) image_type = ImageType.INTERMEDIATE image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) context.services.images.save(image_type, image_name, ilerp_image, metadata) return build_image_output( image_type=image_type, image_name=image_name, image=ilerp_image )