from __future__ import annotations from contextlib import nullcontext from packaging import version import platform import torch from torch import autocast from typing import Union from invokeai.app.services.config import InvokeAIAppConfig CPU_DEVICE = torch.device("cpu") CUDA_DEVICE = torch.device("cuda") MPS_DEVICE = torch.device("mps") config = InvokeAIAppConfig.get_config() def choose_torch_device() -> torch.device: """Convenience routine for guessing which GPU device to run model on""" if config.use_cpu: # legacy setting - force CPU return CPU_DEVICE elif config.device == "auto": if torch.cuda.is_available(): return torch.device("cuda") if hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): return torch.device("mps") else: return CPU_DEVICE else: return torch.device(config.device) def choose_precision(device: torch.device) -> str: """Returns an appropriate precision for the given torch device""" if device.type == "cuda": device_name = torch.cuda.get_device_name(device) if not ("GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name): return "float16" elif device.type == "mps" and version.parse(platform.mac_ver()[0]) < version.parse("14.0.0"): return "float16" return "float32" def torch_dtype(device: torch.device) -> torch.dtype: if config.full_precision: return torch.float32 if choose_precision(device) == "float16": return torch.float16 else: return torch.float32 def choose_autocast(precision): """Returns an autocast context or nullcontext for the given precision string""" # float16 currently requires autocast to avoid errors like: # 'expected scalar type Half but found Float' if precision == "autocast" or precision == "float16": return autocast return nullcontext def normalize_device(device: Union[str, torch.device]) -> torch.device: """Ensure device has a device index defined, if appropriate.""" device = torch.device(device) if device.index is None: # cuda might be the only torch backend that currently uses the device index? # I don't see anything like `current_device` for cpu or mps. if device.type == "cuda": device = torch.device(device.type, torch.cuda.current_device()) return device