# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein import pathlib from typing import Annotated, List, Literal, Optional, Union from fastapi import Body, Path, Query, Response from fastapi.routing import APIRouter from pydantic import BaseModel, ConfigDict, Field, TypeAdapter from starlette.exceptions import HTTPException from invokeai.backend import BaseModelType, ModelType from invokeai.backend.model_management import MergeInterpolationMethod from invokeai.backend.model_management.models import ( OPENAPI_MODEL_CONFIGS, InvalidModelException, ModelNotFoundException, SchedulerPredictionType, ) from ..dependencies import ApiDependencies models_router = APIRouter(prefix="/v1/models", tags=["models"]) UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] UpdateModelResponseValidator = TypeAdapter(UpdateModelResponse) ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] ImportModelResponseValidator = TypeAdapter(ImportModelResponse) ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] ConvertModelResponseValidator = TypeAdapter(ConvertModelResponse) MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)] class ModelsList(BaseModel): models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]] model_config = ConfigDict(use_enum_values=True) ModelsListValidator = TypeAdapter(ModelsList) @models_router.get( "/", operation_id="list_models", responses={200: {"model": ModelsList}}, ) async def list_models( base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"), model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"), ) -> ModelsList: """Gets a list of models""" if base_models and len(base_models) > 0: models_raw = [] for base_model in base_models: models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)) else: models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type) models = ModelsListValidator.validate_python({"models": models_raw}) return models @models_router.patch( "/{base_model}/{model_type}/{model_name}", operation_id="update_model", responses={ 200: {"description": "The model was updated successfully"}, 400: {"description": "Bad request"}, 404: {"description": "The model could not be found"}, 409: {"description": "There is already a model corresponding to the new name"}, }, status_code=200, response_model=UpdateModelResponse, ) async def update_model( base_model: BaseModelType = Path(description="Base model"), model_type: ModelType = Path(description="The type of model"), model_name: str = Path(description="model name"), info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"), ) -> UpdateModelResponse: """Update model contents with a new config. If the model name or base fields are changed, then the model is renamed.""" logger = ApiDependencies.invoker.services.logger try: previous_info = ApiDependencies.invoker.services.model_manager.list_model( model_name=model_name, base_model=base_model, model_type=model_type, ) # rename operation requested if info.model_name != model_name or info.base_model != base_model: ApiDependencies.invoker.services.model_manager.rename_model( base_model=base_model, model_type=model_type, model_name=model_name, new_name=info.model_name, new_base=info.base_model, ) logger.info(f"Successfully renamed {base_model.value}/{model_name}=>{info.base_model}/{info.model_name}") # update information to support an update of attributes model_name = info.model_name base_model = info.base_model new_info = ApiDependencies.invoker.services.model_manager.list_model( model_name=model_name, base_model=base_model, model_type=model_type, ) if new_info.get("path") != previous_info.get( "path" ): # model manager moved model path during rename - don't overwrite it info.path = new_info.get("path") # replace empty string values with None/null to avoid phenomenon of vae: '' info_dict = info.model_dump() info_dict = {x: info_dict[x] if info_dict[x] else None for x in info_dict.keys()} ApiDependencies.invoker.services.model_manager.update_model( model_name=model_name, base_model=base_model, model_type=model_type, model_attributes=info_dict, ) model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_name=model_name, base_model=base_model, model_type=model_type, ) model_response = UpdateModelResponseValidator.validate_python(model_raw) except ModelNotFoundException as e: raise HTTPException(status_code=404, detail=str(e)) except ValueError as e: logger.error(str(e)) raise HTTPException(status_code=409, detail=str(e)) except Exception as e: logger.error(str(e)) raise HTTPException(status_code=400, detail=str(e)) return model_response @models_router.post( "/import", operation_id="import_model", responses={ 201: {"description": "The model imported successfully"}, 404: {"description": "The model could not be found"}, 415: {"description": "Unrecognized file/folder format"}, 424: {"description": "The model appeared to import successfully, but could not be found in the model manager"}, 409: {"description": "There is already a model corresponding to this path or repo_id"}, }, status_code=201, response_model=ImportModelResponse, ) async def import_model( location: str = Body(description="A model path, repo_id or URL to import"), prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body( description="Prediction type for SDv2 checkpoints and rare SDv1 checkpoints", default=None, ), ) -> ImportModelResponse: """Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically""" location = location.strip("\"' ") items_to_import = {location} prediction_types = {x.value: x for x in SchedulerPredictionType} logger = ApiDependencies.invoker.services.logger try: installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import( items_to_import=items_to_import, prediction_type_helper=lambda x: prediction_types.get(prediction_type), ) info = installed_models.get(location) if not info: logger.error("Import failed") raise HTTPException(status_code=415) logger.info(f"Successfully imported {location}, got {info}") model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_name=info.name, base_model=info.base_model, model_type=info.model_type ) return ImportModelResponseValidator.validate_python(model_raw) except ModelNotFoundException as e: logger.error(str(e)) raise HTTPException(status_code=404, detail=str(e)) except InvalidModelException as e: logger.error(str(e)) raise HTTPException(status_code=415) except ValueError as e: logger.error(str(e)) raise HTTPException(status_code=409, detail=str(e)) @models_router.post( "/add", operation_id="add_model", responses={ 201: {"description": "The model added successfully"}, 404: {"description": "The model could not be found"}, 424: {"description": "The model appeared to add successfully, but could not be found in the model manager"}, 409: {"description": "There is already a model corresponding to this path or repo_id"}, }, status_code=201, response_model=ImportModelResponse, ) async def add_model( info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"), ) -> ImportModelResponse: """Add a model using the configuration information appropriate for its type. Only local models can be added by path""" logger = ApiDependencies.invoker.services.logger try: ApiDependencies.invoker.services.model_manager.add_model( info.model_name, info.base_model, info.model_type, model_attributes=info.model_dump(), ) logger.info(f"Successfully added {info.model_name}") model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_name=info.model_name, base_model=info.base_model, model_type=info.model_type, ) return ImportModelResponseValidator.validate_python(model_raw) except ModelNotFoundException as e: logger.error(str(e)) raise HTTPException(status_code=404, detail=str(e)) except ValueError as e: logger.error(str(e)) raise HTTPException(status_code=409, detail=str(e)) @models_router.delete( "/{base_model}/{model_type}/{model_name}", operation_id="del_model", responses={ 204: {"description": "Model deleted successfully"}, 404: {"description": "Model not found"}, }, status_code=204, response_model=None, ) async def delete_model( base_model: BaseModelType = Path(description="Base model"), model_type: ModelType = Path(description="The type of model"), model_name: str = Path(description="model name"), ) -> Response: """Delete Model""" logger = ApiDependencies.invoker.services.logger try: ApiDependencies.invoker.services.model_manager.del_model( model_name, base_model=base_model, model_type=model_type ) logger.info(f"Deleted model: {model_name}") return Response(status_code=204) except ModelNotFoundException as e: logger.error(str(e)) raise HTTPException(status_code=404, detail=str(e)) @models_router.put( "/convert/{base_model}/{model_type}/{model_name}", operation_id="convert_model", responses={ 200: {"description": "Model converted successfully"}, 400: {"description": "Bad request"}, 404: {"description": "Model not found"}, }, status_code=200, response_model=ConvertModelResponse, ) async def convert_model( base_model: BaseModelType = Path(description="Base model"), model_type: ModelType = Path(description="The type of model"), model_name: str = Path(description="model name"), convert_dest_directory: Optional[str] = Query( default=None, description="Save the converted model to the designated directory" ), ) -> ConvertModelResponse: """Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none.""" logger = ApiDependencies.invoker.services.logger try: logger.info(f"Converting model: {model_name}") dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None ApiDependencies.invoker.services.model_manager.convert_model( model_name, base_model=base_model, model_type=model_type, convert_dest_directory=dest, ) model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_name, base_model=base_model, model_type=model_type ) response = ConvertModelResponseValidator.validate_python(model_raw) except ModelNotFoundException as e: raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}") except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) return response @models_router.get( "/search", operation_id="search_for_models", responses={ 200: {"description": "Directory searched successfully"}, 404: {"description": "Invalid directory path"}, }, status_code=200, response_model=List[pathlib.Path], ) async def search_for_models( search_path: pathlib.Path = Query(description="Directory path to search for models"), ) -> List[pathlib.Path]: if not search_path.is_dir(): raise HTTPException( status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory", ) return ApiDependencies.invoker.services.model_manager.search_for_models(search_path) @models_router.get( "/ckpt_confs", operation_id="list_ckpt_configs", responses={ 200: {"description": "paths retrieved successfully"}, }, status_code=200, response_model=List[pathlib.Path], ) async def list_ckpt_configs() -> List[pathlib.Path]: """Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT.""" return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs() @models_router.post( "/sync", operation_id="sync_to_config", responses={ 201: {"description": "synchronization successful"}, }, status_code=201, response_model=bool, ) async def sync_to_config() -> bool: """Call after making changes to models.yaml, autoimport directories or models directory to synchronize in-memory data structures with disk data structures.""" ApiDependencies.invoker.services.model_manager.sync_to_config() return True # There's some weird pydantic-fastapi behaviour that requires this to be a separate class # TODO: After a few updates, see if it works inside the route operation handler? class MergeModelsBody(BaseModel): model_names: List[str] = Field(description="model name", min_length=2, max_length=3) merged_model_name: Optional[str] = Field(description="Name of destination model") alpha: Optional[float] = Field(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5) interp: Optional[MergeInterpolationMethod] = Field(description="Interpolation method") force: Optional[bool] = Field( description="Force merging of models created with different versions of diffusers", default=False, ) merge_dest_directory: Optional[str] = Field( description="Save the merged model to the designated directory (with 'merged_model_name' appended)", default=None, ) model_config = ConfigDict(protected_namespaces=()) @models_router.put( "/merge/{base_model}", operation_id="merge_models", responses={ 200: {"description": "Model converted successfully"}, 400: {"description": "Incompatible models"}, 404: {"description": "One or more models not found"}, }, status_code=200, response_model=MergeModelResponse, ) async def merge_models( body: Annotated[MergeModelsBody, Body(description="Model configuration", embed=True)], base_model: BaseModelType = Path(description="Base model"), ) -> MergeModelResponse: """Convert a checkpoint model into a diffusers model""" logger = ApiDependencies.invoker.services.logger try: logger.info( f"Merging models: {body.model_names} into {body.merge_dest_directory or ''}/{body.merged_model_name}" ) dest = pathlib.Path(body.merge_dest_directory) if body.merge_dest_directory else None result = ApiDependencies.invoker.services.model_manager.merge_models( model_names=body.model_names, base_model=base_model, merged_model_name=body.merged_model_name or "+".join(body.model_names), alpha=body.alpha, interp=body.interp, force=body.force, merge_dest_directory=dest, ) model_raw = ApiDependencies.invoker.services.model_manager.list_model( result.name, base_model=base_model, model_type=ModelType.Main, ) response = ConvertModelResponseValidator.validate_python(model_raw) except ModelNotFoundException: raise HTTPException( status_code=404, detail=f"One or more of the models '{body.model_names}' not found", ) except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) return response