from typing import Literal, Optional, Union from pydantic import BaseModel, Field from invokeai.app.invocations.util.choose_model import choose_model from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig from ...backend.util.devices import choose_torch_device, torch_dtype from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager from compel import Compel from compel.prompt_parser import ( Blend, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment, ) from invokeai.backend.globals import Globals class ConditioningField(BaseModel): conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data") class Config: schema_extra = {"required": ["conditioning_name"]} class CompelOutput(BaseInvocationOutput): """Compel parser output""" #fmt: off type: Literal["compel_output"] = "compel_output" conditioning: ConditioningField = Field(default=None, description="Conditioning") #fmt: on class CompelInvocation(BaseInvocation): """Parse prompt using compel package to conditioning.""" type: Literal["compel"] = "compel" prompt: str = Field(default="", description="Prompt") model: str = Field(default="", description="Model to use") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["prompt", "compel"], "type_hints": { "model": "model" } }, } def invoke(self, context: InvocationContext) -> CompelOutput: # TODO: load without model model = choose_model(context.services.model_manager, self.model) pipeline = model["model"] tokenizer = pipeline.tokenizer text_encoder = pipeline.text_encoder # TODO: global? input? #use_full_precision = precision == "float32" or precision == "autocast" #use_full_precision = False # TODO: redo TI when separate model loding implemented #textual_inversion_manager = TextualInversionManager( # tokenizer=tokenizer, # text_encoder=text_encoder, # full_precision=use_full_precision, #) def load_huggingface_concepts(concepts: list[str]): pipeline.textual_inversion_manager.load_huggingface_concepts(concepts) # apply the concepts library to the prompt prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers( self.prompt, lambda concepts: load_huggingface_concepts(concepts), pipeline.textual_inversion_manager.get_all_trigger_strings(), ) # lazy-load any deferred textual inversions. # this might take a couple of seconds the first time a textual inversion is used. pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms( prompt_str ) compel = Compel( tokenizer=tokenizer, text_encoder=text_encoder, textual_inversion_manager=pipeline.textual_inversion_manager, dtype_for_device_getter=torch_dtype, truncate_long_prompts=True, # TODO: ) # TODO: support legacy blend? prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(prompt_str) if getattr(Globals, "log_tokenization", False): log_tokenization_for_prompt_object(prompt, tokenizer) c, options = compel.build_conditioning_tensor_for_prompt_object(prompt) # TODO: long prompt support #if not self.truncate_long_prompts: # [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc]) ec = InvokeAIDiffuserComponent.ExtraConditioningInfo( tokens_count_including_eos_bos=get_max_token_count(tokenizer, prompt), cross_attention_control_args=options.get("cross_attention_control", None), ) conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning" # TODO: hacky but works ;D maybe rename latents somehow? context.services.latents.set(conditioning_name, (c, ec)) return CompelOutput( conditioning=ConditioningField( conditioning_name=conditioning_name, ), ) def get_max_token_count( tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False ) -> int: if type(prompt) is Blend: blend: Blend = prompt return max( [ get_max_token_count(tokenizer, c, truncate_if_too_long) for c in blend.prompts ] ) else: return len( get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long) ) def get_tokens_for_prompt_object( tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True ) -> [str]: if type(parsed_prompt) is Blend: raise ValueError( "Blend is not supported here - you need to get tokens for each of its .children" ) text_fragments = [ x.text if type(x) is Fragment else ( " ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else str(x) ) for x in parsed_prompt.children ] text = " ".join(text_fragments) tokens = tokenizer.tokenize(text) if truncate_if_too_long: max_tokens_length = tokenizer.model_max_length - 2 # typically 75 tokens = tokens[0:max_tokens_length] return tokens def log_tokenization_for_prompt_object( p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None ): display_label_prefix = display_label_prefix or "" if type(p) is Blend: blend: Blend = p for i, c in enumerate(blend.prompts): log_tokenization_for_prompt_object( c, tokenizer, display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})", ) elif type(p) is FlattenedPrompt: flattened_prompt: FlattenedPrompt = p if flattened_prompt.wants_cross_attention_control: original_fragments = [] edited_fragments = [] for f in flattened_prompt.children: if type(f) is CrossAttentionControlSubstitute: original_fragments += f.original edited_fragments += f.edited else: original_fragments.append(f) edited_fragments.append(f) original_text = " ".join([x.text for x in original_fragments]) log_tokenization_for_text( original_text, tokenizer, display_label=f"{display_label_prefix}(.swap originals)", ) edited_text = " ".join([x.text for x in edited_fragments]) log_tokenization_for_text( edited_text, tokenizer, display_label=f"{display_label_prefix}(.swap replacements)", ) else: text = " ".join([x.text for x in flattened_prompt.children]) log_tokenization_for_text( text, tokenizer, display_label=display_label_prefix ) def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False): """shows how the prompt is tokenized # usually tokens have '' to indicate end-of-word, # but for readability it has been replaced with ' ' """ tokens = tokenizer.tokenize(text) tokenized = "" discarded = "" usedTokens = 0 totalTokens = len(tokens) for i in range(0, totalTokens): token = tokens[i].replace("", " ") # alternate color s = (usedTokens % 6) + 1 if truncate_if_too_long and i >= tokenizer.model_max_length: discarded = discarded + f"\x1b[0;3{s};40m{token}" else: tokenized = tokenized + f"\x1b[0;3{s};40m{token}" usedTokens += 1 if usedTokens > 0: print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):') print(f"{tokenized}\x1b[0m") if discarded != "": print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):") print(f"{discarded}\x1b[0m")