# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team from pathlib import Path from typing import Literal import cv2 import numpy as np import torch from PIL import Image from pydantic import ConfigDict from invokeai.app.invocations.fields import ImageField from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN from invokeai.backend.util.devices import choose_torch_device from .baseinvocation import BaseInvocation, invocation from .fields import InputField, WithBoard, WithMetadata # TODO: Populate this from disk? # TODO: Use model manager to load? ESRGAN_MODELS = Literal[ "RealESRGAN_x4plus.pth", "RealESRGAN_x4plus_anime_6B.pth", "ESRGAN_SRx4_DF2KOST_official-ff704c30.pth", "RealESRGAN_x2plus.pth", ] if choose_torch_device() == torch.device("mps"): from torch import mps @invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.1") class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard): """Upscales an image using RealESRGAN.""" image: ImageField = InputField(description="The input image") model_name: ESRGAN_MODELS = InputField(default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use") tile_size: int = InputField( default=400, ge=0, description="Tile size for tiled ESRGAN upscaling (0=tiling disabled)" ) model_config = ConfigDict(protected_namespaces=()) def invoke(self, context: InvocationContext) -> ImageOutput: image = context.images.get_pil(self.image.image_name) models_path = context.config.get().models_path rrdbnet_model = None netscale = None esrgan_model_path = None if self.model_name in [ "RealESRGAN_x4plus.pth", "ESRGAN_SRx4_DF2KOST_official-ff704c30.pth", ]: # x4 RRDBNet model rrdbnet_model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4, ) netscale = 4 elif self.model_name in ["RealESRGAN_x4plus_anime_6B.pth"]: # x4 RRDBNet model, 6 blocks rrdbnet_model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, # 6 blocks num_grow_ch=32, scale=4, ) netscale = 4 elif self.model_name in ["RealESRGAN_x2plus.pth"]: # x2 RRDBNet model rrdbnet_model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2, ) netscale = 2 else: msg = f"Invalid RealESRGAN model: {self.model_name}" context.logger.error(msg) raise ValueError(msg) esrgan_model_path = Path(f"core/upscaling/realesrgan/{self.model_name}") upscaler = RealESRGAN( scale=netscale, model_path=models_path / esrgan_model_path, model=rrdbnet_model, half=False, tile=self.tile_size, ) # prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL # TODO: This strips the alpha... is that okay? cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR) upscaled_image = upscaler.upscale(cv2_image) pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA") torch.cuda.empty_cache() if choose_torch_device() == torch.device("mps"): mps.empty_cache() image_dto = context.images.save(image=pil_image) return ImageOutput.build(image_dto)