import gc from typing import Any import numpy as np import torch from PIL import Image import invokeai.backend.util.logging as logger from invokeai.app.services.config.config_default import get_config from invokeai.app.util.download_with_progress import download_with_progress_bar from invokeai.backend.util.devices import choose_torch_device def norm_img(np_img): if len(np_img.shape) == 2: np_img = np_img[:, :, np.newaxis] np_img = np.transpose(np_img, (2, 0, 1)) np_img = np_img.astype("float32") / 255 return np_img def load_jit_model(url_or_path, device): model_path = url_or_path logger.info(f"Loading model from: {model_path}") model = torch.jit.load(model_path, map_location="cpu").to(device) model.eval() return model class LaMA: def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any: device = choose_torch_device() model_location = get_config().models_path / "core/misc/lama/lama.pt" if not model_location.exists(): download_with_progress_bar( name="LaMa Inpainting Model", url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", dest_path=model_location, ) model = load_jit_model(model_location, device) image = np.asarray(input_image.convert("RGB")) image = norm_img(image) mask = input_image.split()[-1] mask = np.asarray(mask) mask = np.invert(mask) mask = norm_img(mask) mask = (mask > 0) * 1 image = torch.from_numpy(image).unsqueeze(0).to(device) mask = torch.from_numpy(mask).unsqueeze(0).to(device) with torch.inference_mode(): infilled_image = model(image, mask) infilled_image = infilled_image[0].permute(1, 2, 0).detach().cpu().numpy() infilled_image = np.clip(infilled_image * 255, 0, 255).astype("uint8") infilled_image = Image.fromarray(infilled_image) del model gc.collect() torch.cuda.empty_cache() return infilled_image