#!/usr/bin/env python # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Before running stable-diffusion on an internet-isolated machine, # run this script from one with internet connectivity. The # two machines must share a common .cache directory. """ This is the npyscreen frontend to the model installation application. The work is actually done in backend code in model_install_backend.py. """ import argparse import curses import sys import textwrap import traceback from argparse import Namespace from multiprocessing import Process from multiprocessing.connection import Connection, Pipe from pathlib import Path from shutil import get_terminal_size import logging import npyscreen import torch from npyscreen import widget from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.install.model_install_backend import ( ModelInstallList, InstallSelections, ModelInstall, SchedulerPredictionType, ) from invokeai.backend.model_management import ModelManager, ModelType from invokeai.backend.util import choose_precision, choose_torch_device from invokeai.frontend.install.widgets import ( CenteredTitleText, MultiSelectColumns, SingleSelectColumns, TextBox, BufferBox, FileBox, set_min_terminal_size, select_stable_diffusion_config_file, CyclingForm, MIN_COLS, MIN_LINES, ) from invokeai.app.services.config import InvokeAIAppConfig config = InvokeAIAppConfig.get_config() logger = InvokeAILogger.getLogger() # build a table mapping all non-printable characters to None # for stripping control characters # from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python NOPRINT_TRANS_TABLE = { i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable() } def make_printable(s:str)->str: '''Replace non-printable characters in a string''' return s.translate(NOPRINT_TRANS_TABLE) class addModelsForm(CyclingForm, npyscreen.FormMultiPage): # for responsive resizing set to False, but this seems to cause a crash! FIX_MINIMUM_SIZE_WHEN_CREATED = True # for persistence current_tab = 0 def __init__(self, parentApp, name, multipage=False, *args, **keywords): self.multipage = multipage self.subprocess = None super().__init__(parentApp=parentApp, name=name, *args, **keywords) def create(self): self.keypress_timeout = 10 self.counter = 0 self.subprocess_connection = None if not config.model_conf_path.exists(): with open(config.model_conf_path,'w') as file: print('# InvokeAI model configuration file',file=file) self.installer = ModelInstall(config) self.all_models = self.installer.all_models() self.starter_models = self.installer.starter_models() self.model_labels = self._get_model_labels() window_width, window_height = get_terminal_size() self.nextrely -= 1 self.add_widget_intelligent( npyscreen.FixedText, value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields,", editable=False, color="CAUTION", ) self.add_widget_intelligent( npyscreen.FixedText, value="Use cursor arrows to make a selection, and space to toggle checkboxes.", editable=False, color="CAUTION", ) self.nextrely += 1 self.tabs = self.add_widget_intelligent( SingleSelectColumns, values=[ 'STARTER MODELS', 'MORE MODELS', 'CONTROLNETS', 'LORA/LYCORIS', 'TEXTUAL INVERSION', ], value=[self.current_tab], columns = 5, max_height = 2, relx=8, scroll_exit = True, ) self.tabs.on_changed = self._toggle_tables top_of_table = self.nextrely self.starter_pipelines = self.add_starter_pipelines() bottom_of_table = self.nextrely self.nextrely = top_of_table self.pipeline_models = self.add_pipeline_widgets( model_type=ModelType.Main, window_width=window_width, exclude = self.starter_models ) # self.pipeline_models['autoload_pending'] = True bottom_of_table = max(bottom_of_table,self.nextrely) self.nextrely = top_of_table self.controlnet_models = self.add_model_widgets( model_type=ModelType.ControlNet, window_width=window_width, ) bottom_of_table = max(bottom_of_table,self.nextrely) self.nextrely = top_of_table self.lora_models = self.add_model_widgets( model_type=ModelType.Lora, window_width=window_width, ) bottom_of_table = max(bottom_of_table,self.nextrely) self.nextrely = top_of_table self.ti_models = self.add_model_widgets( model_type=ModelType.TextualInversion, window_width=window_width, ) bottom_of_table = max(bottom_of_table,self.nextrely) self.nextrely = bottom_of_table+1 self.monitor = self.add_widget_intelligent( BufferBox, name='Log Messages', editable=False, max_height = 10, ) self.nextrely += 1 done_label = "APPLY CHANGES" back_label = "BACK" if self.multipage: self.back_button = self.add_widget_intelligent( npyscreen.ButtonPress, name=back_label, rely=-3, when_pressed_function=self.on_back, ) else: self.ok_button = self.add_widget_intelligent( npyscreen.ButtonPress, name=done_label, relx=(window_width - len(done_label)) // 2, rely=-3, when_pressed_function=self.on_execute ) label = "APPLY CHANGES & EXIT" self.done = self.add_widget_intelligent( npyscreen.ButtonPress, name=label, rely=-3, relx=window_width-len(label)-15, when_pressed_function=self.on_done, ) # This restores the selected page on return from an installation for i in range(1,self.current_tab+1): self.tabs.h_cursor_line_down(1) self._toggle_tables([self.current_tab]) ############# diffusers tab ########## def add_starter_pipelines(self)->dict[str, npyscreen.widget]: '''Add widgets responsible for selecting diffusers models''' widgets = dict() models = self.all_models starters = self.starter_models starter_model_labels = self.model_labels self.installed_models = sorted( [x for x in starters if models[x].installed] ) widgets.update( label1 = self.add_widget_intelligent( CenteredTitleText, name="Select from a starter set of Stable Diffusion models from HuggingFace.", editable=False, labelColor="CAUTION", ) ) self.nextrely -= 1 # if user has already installed some initial models, then don't patronize them # by showing more recommendations show_recommended = len(self.installed_models)==0 keys = [x for x in models.keys() if x in starters] widgets.update( models_selected = self.add_widget_intelligent( MultiSelectColumns, columns=1, name="Install Starter Models", values=[starter_model_labels[x] for x in keys], value=[ keys.index(x) for x in keys if (show_recommended and models[x].recommended) \ or (x in self.installed_models) ], max_height=len(starters) + 1, relx=4, scroll_exit=True, ), models = keys, ) self.nextrely += 1 return widgets ############# Add a set of model install widgets ######## def add_model_widgets(self, model_type: ModelType, window_width: int=120, install_prompt: str=None, exclude: set=set(), )->dict[str,npyscreen.widget]: '''Generic code to create model selection widgets''' widgets = dict() model_list = [x for x in self.all_models if self.all_models[x].model_type==model_type and not x in exclude] model_labels = [self.model_labels[x] for x in model_list] if len(model_list) > 0: max_width = max([len(x) for x in model_labels]) columns = window_width // (max_width+8) # 8 characters for "[x] " and padding columns = min(len(model_list),columns) or 1 prompt = install_prompt or f"Select the desired {model_type.value.title()} models to install. Unchecked models will be purged from disk." widgets.update( label1 = self.add_widget_intelligent( CenteredTitleText, name=prompt, editable=False, labelColor="CAUTION", ) ) widgets.update( models_selected = self.add_widget_intelligent( MultiSelectColumns, columns=columns, name=f"Install {model_type} Models", values=model_labels, value=[ model_list.index(x) for x in model_list if self.all_models[x].installed ], max_height=len(model_list)//columns + 1, relx=4, scroll_exit=True, ), models = model_list, ) self.nextrely += 1 widgets.update( download_ids = self.add_widget_intelligent( TextBox, name = "Additional URLs, or HuggingFace repo_ids to install (Space separated. Use shift-control-V to paste):", max_height=4, scroll_exit=True, editable=True, ) ) return widgets ### Tab for arbitrary diffusers widgets ### def add_pipeline_widgets(self, model_type: ModelType=ModelType.Main, window_width: int=120, **kwargs, )->dict[str,npyscreen.widget]: '''Similar to add_model_widgets() but adds some additional widgets at the bottom to support the autoload directory''' widgets = self.add_model_widgets( model_type = model_type, window_width = window_width, install_prompt=f"Additional {model_type.value.title()} models already installed.", **kwargs, ) return widgets def resize(self): super().resize() if (s := self.starter_pipelines.get("models_selected")): keys = [x for x in self.all_models.keys() if x in self.starter_models] s.values = [self.model_labels[x] for x in keys] def _toggle_tables(self, value=None): selected_tab = value[0] widgets = [ self.starter_pipelines, self.pipeline_models, self.controlnet_models, self.lora_models, self.ti_models, ] for group in widgets: for k,v in group.items(): try: v.hidden = True v.editable = False except: pass for k,v in widgets[selected_tab].items(): try: v.hidden = False if not isinstance(v,(npyscreen.FixedText, npyscreen.TitleFixedText, CenteredTitleText)): v.editable = True except: pass self.__class__.current_tab = selected_tab # for persistence self.display() def _get_model_labels(self) -> dict[str,str]: window_width, window_height = get_terminal_size() checkbox_width = 4 spacing_width = 2 models = self.all_models label_width = max([len(models[x].name) for x in models]) description_width = window_width - label_width - checkbox_width - spacing_width result = dict() for x in models.keys(): description = models[x].description description = description[0 : description_width - 3] + "..." \ if description and len(description) > description_width \ else description if description else '' result[x] = f"%-{label_width}s %s" % (models[x].name, description) return result def _get_columns(self) -> int: window_width, window_height = get_terminal_size() cols = ( 4 if window_width > 240 else 3 if window_width > 160 else 2 if window_width > 80 else 1 ) return min(cols, len(self.installed_models)) def on_execute(self): self.monitor.entry_widget.buffer(['Processing...'],scroll_end=True) self.marshall_arguments() app = self.parentApp self.ok_button.hidden = True self.display() # for communication with the subprocess parent_conn, child_conn = Pipe() p = Process( target = process_and_execute, kwargs=dict( opt = app.program_opts, selections = app.install_selections, conn_out = child_conn, ) ) p.start() child_conn.close() self.subprocess_connection = parent_conn self.subprocess = p app.install_selections = InstallSelections() # process_and_execute(app.opt, app.install_selections) def on_back(self): self.parentApp.switchFormPrevious() self.editing = False def on_cancel(self): self.parentApp.setNextForm(None) self.parentApp.user_cancelled = True self.editing = False def on_done(self): self.marshall_arguments() self.parentApp.setNextForm(None) self.parentApp.user_cancelled = False self.editing = False ########## This routine monitors the child process that is performing model installation and removal ##### def while_waiting(self): '''Called during idle periods. Main task is to update the Log Messages box with messages from the child process that does the actual installation/removal''' c = self.subprocess_connection if not c: return monitor_widget = self.monitor.entry_widget while c.poll(): try: data = c.recv_bytes().decode('utf-8') data.strip('\n') # processing child is requesting user input to select the # right configuration file if data.startswith('*need v2 config'): _,model_path,*_ = data.split(":",2) self._return_v2_config(model_path) # processing child is done elif data=='*done*': self._close_subprocess_and_regenerate_form() break # update the log message box else: data=make_printable(data) data=data.replace('[A','') monitor_widget.buffer( textwrap.wrap(data, width=monitor_widget.width, subsequent_indent=' ', ), scroll_end=True ) self.display() except (EOFError,OSError): self.subprocess_connection = None def _return_v2_config(self,model_path: str): c = self.subprocess_connection model_name = Path(model_path).name message = select_stable_diffusion_config_file(model_name=model_name) c.send_bytes(message.encode('utf-8')) def _close_subprocess_and_regenerate_form(self): app = self.parentApp self.subprocess_connection.close() self.subprocess_connection = None self.monitor.entry_widget.buffer(['** Action Complete **']) self.display() # rebuild the form, saving and restoring some of the fields that need to be preserved. saved_messages = self.monitor.entry_widget.values # autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value) # autoscan = self.pipeline_models['autoscan_on_startup'].value app.main_form = app.addForm( "MAIN", addModelsForm, name="Install Stable Diffusion Models", multipage=self.multipage, ) app.switchForm("MAIN") app.main_form.monitor.entry_widget.values = saved_messages app.main_form.monitor.entry_widget.buffer([''],scroll_end=True) # app.main_form.pipeline_models['autoload_directory'].value = autoload_dir # app.main_form.pipeline_models['autoscan_on_startup'].value = autoscan def marshall_arguments(self): """ Assemble arguments and store as attributes of the application: .starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml True => Install False => Remove .scan_directory: Path to a directory of models to scan and import .autoscan_on_startup: True if invokeai should scan and import at startup time .import_model_paths: list of URLs, repo_ids and file paths to import """ selections = self.parentApp.install_selections all_models = self.all_models # Defined models (in INITIAL_CONFIG.yaml or models.yaml) to add/remove ui_sections = [self.starter_pipelines, self.pipeline_models, self.controlnet_models, self.lora_models, self.ti_models] for section in ui_sections: if not 'models_selected' in section: continue selected = set([section['models'][x] for x in section['models_selected'].value]) models_to_install = [x for x in selected if not self.all_models[x].installed] models_to_remove = [x for x in section['models'] if x not in selected and self.all_models[x].installed] selections.remove_models.extend(models_to_remove) selections.install_models.extend(all_models[x].path or all_models[x].repo_id \ for x in models_to_install if all_models[x].path or all_models[x].repo_id) # models located in the 'download_ids" section for section in ui_sections: if downloads := section.get('download_ids'): selections.install_models.extend(downloads.value.split()) # load directory and whether to scan on startup # if self.parentApp.autoload_pending: # selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value) # self.parentApp.autoload_pending = False # selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value class AddModelApplication(npyscreen.NPSAppManaged): def __init__(self,opt): super().__init__() self.program_opts = opt self.user_cancelled = False # self.autoload_pending = True self.install_selections = InstallSelections() def onStart(self): npyscreen.setTheme(npyscreen.Themes.DefaultTheme) self.main_form = self.addForm( "MAIN", addModelsForm, name="Install Stable Diffusion Models", cycle_widgets=True, ) class StderrToMessage(): def __init__(self, connection: Connection): self.connection = connection def write(self, data:str): self.connection.send_bytes(data.encode('utf-8')) def flush(self): pass # -------------------------------------------------------- def ask_user_for_prediction_type(model_path: Path, tui_conn: Connection=None )->SchedulerPredictionType: if tui_conn: logger.debug('Waiting for user response...') return _ask_user_for_pt_tui(model_path, tui_conn) else: return _ask_user_for_pt_cmdline(model_path) def _ask_user_for_pt_cmdline(model_path: Path)->SchedulerPredictionType: choices = [SchedulerPredictionType.Epsilon, SchedulerPredictionType.VPrediction, None] print( f""" Please select the type of the V2 checkpoint named {model_path.name}: [1] A model based on Stable Diffusion v2 trained on 512 pixel images (SD-2-base) [2] A model based on Stable Diffusion v2 trained on 768 pixel images (SD-2-768) [3] Skip this model and come back later. """ ) choice = None ok = False while not ok: try: choice = input('select> ').strip() choice = choices[int(choice)-1] ok = True except (ValueError, IndexError): print(f'{choice} is not a valid choice') except EOFError: return return choice def _ask_user_for_pt_tui(model_path: Path, tui_conn: Connection)->SchedulerPredictionType: try: tui_conn.send_bytes(f'*need v2 config for:{model_path}'.encode('utf-8')) # note that we don't do any status checking here response = tui_conn.recv_bytes().decode('utf-8') if response is None: return None elif response == 'epsilon': return SchedulerPredictionType.epsilon elif response == 'v': return SchedulerPredictionType.VPrediction elif response == 'abort': logger.info('Conversion aborted') return None else: return response except: return None # -------------------------------------------------------- def process_and_execute(opt: Namespace, selections: InstallSelections, conn_out: Connection=None, ): # set up so that stderr is sent to conn_out if conn_out: translator = StderrToMessage(conn_out) sys.stderr = translator sys.stdout = translator logger = InvokeAILogger.getLogger() logger.handlers.clear() logger.addHandler(logging.StreamHandler(translator)) installer = ModelInstall(config, prediction_type_helper=lambda x: ask_user_for_prediction_type(x,conn_out)) installer.install(selections) if conn_out: conn_out.send_bytes('*done*'.encode('utf-8')) conn_out.close() def do_listings(opt)->bool: """List installed models of various sorts, and return True if any were requested.""" model_manager = ModelManager(config.model_conf_path) if opt.list_models == 'diffusers': print("Diffuser models:") model_manager.print_models() elif opt.list_models == 'controlnets': print("Installed Controlnet Models:") cnm = model_manager.list_controlnet_models() print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' ')) elif opt.list_models == 'loras': print("Installed LoRA/LyCORIS Models:") cnm = model_manager.list_lora_models() print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' ')) elif opt.list_models == 'tis': print("Installed Textual Inversion Embeddings:") cnm = model_manager.list_ti_models() print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' ')) else: return False return True # -------------------------------------------------------- def select_and_download_models(opt: Namespace): precision = ( "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device())) ) config.precision = precision helper = lambda x: ask_user_for_prediction_type(x) # if do_listings(opt): # pass installer = ModelInstall(config, prediction_type_helper=helper) if opt.add or opt.delete: selections = InstallSelections( install_models = opt.add or [], remove_models = opt.delete or [] ) installer.install(selections) elif opt.default_only: selections = InstallSelections( install_models = installer.default_model() ) installer.install(selections) elif opt.yes_to_all: selections = InstallSelections( install_models = installer.recommended_models() ) installer.install(selections) # this is where the TUI is called else: # needed because the torch library is loaded, even though we don't use it # currently commented out because it has started generating errors (?) # torch.multiprocessing.set_start_method("spawn") # the third argument is needed in the Windows 11 environment in # order to launch and resize a console window running this program set_min_terminal_size(MIN_COLS, MIN_LINES,'invokeai-model-install') installApp = AddModelApplication(opt) try: installApp.run() except KeyboardInterrupt as e: if hasattr(installApp,'main_form'): if installApp.main_form.subprocess \ and installApp.main_form.subprocess.is_alive(): logger.info('Terminating subprocesses') installApp.main_form.subprocess.terminate() installApp.main_form.subprocess = None raise e process_and_execute(opt, installApp.install_selections) # ------------------------------------- def main(): parser = argparse.ArgumentParser(description="InvokeAI model downloader") parser.add_argument( "--add", nargs="*", help="List of URLs, local paths or repo_ids of models to install", ) parser.add_argument( "--delete", nargs="*", help="List of names of models to idelete", ) parser.add_argument( "--full-precision", dest="full_precision", action=argparse.BooleanOptionalAction, type=bool, default=False, help="use 32-bit weights instead of faster 16-bit weights", ) parser.add_argument( "--yes", "-y", dest="yes_to_all", action="store_true", help='answer "yes" to all prompts', ) parser.add_argument( "--default_only", action="store_true", help="Only install the default model", ) parser.add_argument( "--list-models", choices=["diffusers","loras","controlnets","tis"], help="list installed models", ) parser.add_argument( "--config_file", "-c", dest="config_file", type=str, default=None, help="path to configuration file to create", ) parser.add_argument( "--root_dir", dest="root", type=str, default=None, help="path to root of install directory", ) opt = parser.parse_args() invoke_args = [] if opt.root: invoke_args.extend(['--root',opt.root]) if opt.full_precision: invoke_args.extend(['--precision','float32']) config.parse_args(invoke_args) logger = InvokeAILogger().getLogger(config=config) if not (config.root_dir / config.conf_path.parent).exists(): logger.info( "Your InvokeAI root directory is not set up. Calling invokeai-configure." ) from invokeai.frontend.install import invokeai_configure invokeai_configure() sys.exit(0) try: select_and_download_models(opt) except AssertionError as e: logger.error(e) sys.exit(-1) except KeyboardInterrupt: curses.nocbreak() curses.echo() curses.endwin() logger.info("Goodbye! Come back soon.") except widget.NotEnoughSpaceForWidget as e: if str(e).startswith("Height of 1 allocated"): logger.error( "Insufficient vertical space for the interface. Please make your window taller and try again" ) input('Press any key to continue...') except Exception as e: if str(e).startswith("addwstr"): logger.error( "Insufficient horizontal space for the interface. Please make your window wider and try again." ) else: print(f'An exception has occurred: {str(e)} Details:') print(traceback.format_exc(), file=sys.stderr) input('Press any key to continue...') # ------------------------------------- if __name__ == "__main__": main()