from __future__ import annotations from contextlib import contextmanager from typing import List, Union import torch.nn as nn from diffusers.models import AutoencoderKL, UNet2DConditionModel def _conv_forward_asymmetric(self, input, weight, bias): """ Patch for Conv2d._conv_forward that supports asymmetric padding """ working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"]) working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"]) return nn.functional.conv2d( working, weight, bias, self.stride, nn.modules.utils._pair(0), self.dilation, self.groups, ) @contextmanager def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL], seamless_axes: List[str]): try: to_restore = [] for m_name, m in model.named_modules(): if isinstance(model, UNet2DConditionModel): if ".attentions." in m_name: continue if ".resnets." in m_name: if ".conv2" in m_name: continue if ".conv_shortcut" in m_name: continue """ if isinstance(model, UNet2DConditionModel): if False and ".upsamplers." in m_name: continue if False and ".downsamplers." in m_name: continue if True and ".resnets." in m_name: if True and ".conv1" in m_name: if False and "down_blocks" in m_name: continue if False and "mid_block" in m_name: continue if False and "up_blocks" in m_name: continue if True and ".conv2" in m_name: continue if True and ".conv_shortcut" in m_name: continue if True and ".attentions." in m_name: continue if False and m_name in ["conv_in", "conv_out"]: continue """ if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): print(f"applied - {m_name}") m.asymmetric_padding_mode = {} m.asymmetric_padding = {} m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant" m.asymmetric_padding["x"] = ( m._reversed_padding_repeated_twice[0], m._reversed_padding_repeated_twice[1], 0, 0, ) m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant" m.asymmetric_padding["y"] = ( 0, 0, m._reversed_padding_repeated_twice[2], m._reversed_padding_repeated_twice[3], ) to_restore.append((m, m._conv_forward)) m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d) yield finally: for module, orig_conv_forward in to_restore: module._conv_forward = orig_conv_forward if hasattr(m, "asymmetric_padding_mode"): del m.asymmetric_padding_mode if hasattr(m, "asymmetric_padding"): del m.asymmetric_padding