import os from copy import deepcopy from glob import glob import pytorch_lightning as pl import torch from einops import rearrange from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel from ldm.util import default, instantiate_from_config, ismap, log_txt_as_img from natsort import natsorted from omegaconf import OmegaConf from torch.nn import functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR __models__ = {"class_label": EncoderUNetModel, "segmentation": UNetModel} def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self class NoisyLatentImageClassifier(pl.LightningModule): def __init__( self, diffusion_path, num_classes, ckpt_path=None, pool="attention", label_key=None, diffusion_ckpt_path=None, scheduler_config=None, weight_decay=1.0e-2, log_steps=10, monitor="val/loss", *args, **kwargs, ): super().__init__(*args, **kwargs) self.num_classes = num_classes # get latest config of diffusion model diffusion_config = natsorted( glob(os.path.join(diffusion_path, "configs", "*-project.yaml")) )[-1] self.diffusion_config = OmegaConf.load(diffusion_config).model self.diffusion_config.params.ckpt_path = diffusion_ckpt_path self.load_diffusion() self.monitor = monitor self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1 self.log_time_interval = self.diffusion_model.num_timesteps // log_steps self.log_steps = log_steps self.label_key = ( label_key if not hasattr(self.diffusion_model, "cond_stage_key") else self.diffusion_model.cond_stage_key ) assert ( self.label_key is not None ), "label_key neither in diffusion model nor in model.params" if self.label_key not in __models__: raise NotImplementedError() self.load_classifier(ckpt_path, pool) self.scheduler_config = scheduler_config self.use_scheduler = self.scheduler_config is not None self.weight_decay = weight_decay def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] missing, unexpected = ( self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False) ) print( f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" ) if len(missing) > 0: print(f"Missing Keys: {missing}") if len(unexpected) > 0: print(f"Unexpected Keys: {unexpected}") def load_diffusion(self): model = instantiate_from_config(self.diffusion_config) self.diffusion_model = model.eval() self.diffusion_model.train = disabled_train for param in self.diffusion_model.parameters(): param.requires_grad = False def load_classifier(self, ckpt_path, pool): model_config = deepcopy(self.diffusion_config.params.unet_config.params) model_config.in_channels = ( self.diffusion_config.params.unet_config.params.out_channels ) model_config.out_channels = self.num_classes if self.label_key == "class_label": model_config.pool = pool self.model = __models__[self.label_key](**model_config) if ckpt_path is not None: print( "#####################################################################" ) print(f'load from ckpt "{ckpt_path}"') print( "#####################################################################" ) self.init_from_ckpt(ckpt_path) @torch.no_grad() def get_x_noisy(self, x, t, noise=None): noise = default(noise, lambda: torch.randn_like(x)) continuous_sqrt_alpha_cumprod = None if self.diffusion_model.use_continuous_noise: continuous_sqrt_alpha_cumprod = ( self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1) ) # todo: make sure t+1 is correct here return self.diffusion_model.q_sample( x_start=x, t=t, noise=noise, continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod, ) def forward(self, x_noisy, t, *args, **kwargs): return self.model(x_noisy, t) @torch.no_grad() def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = rearrange(x, "b h w c -> b c h w") x = x.to(memory_format=torch.contiguous_format).float() return x @torch.no_grad() def get_conditioning(self, batch, k=None): if k is None: k = self.label_key assert k is not None, "Needs to provide label key" targets = batch[k].to(self.device) if self.label_key == "segmentation": targets = rearrange(targets, "b h w c -> b c h w") for down in range(self.numd): h, w = targets.shape[-2:] targets = F.interpolate(targets, size=(h // 2, w // 2), mode="nearest") # targets = rearrange(targets,'b c h w -> b h w c') return targets def compute_top_k(self, logits, labels, k, reduction="mean"): _, top_ks = torch.topk(logits, k, dim=1) if reduction == "mean": return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() elif reduction == "none": return (top_ks == labels[:, None]).float().sum(dim=-1) def on_train_epoch_start(self): # save some memory self.diffusion_model.model.to("cpu") @torch.no_grad() def write_logs(self, loss, logits, targets): log_prefix = "train" if self.training else "val" log = {} log[f"{log_prefix}/loss"] = loss.mean() log[f"{log_prefix}/acc@1"] = self.compute_top_k( logits, targets, k=1, reduction="mean" ) log[f"{log_prefix}/acc@5"] = self.compute_top_k( logits, targets, k=5, reduction="mean" ) self.log_dict( log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True, ) self.log("loss", log[f"{log_prefix}/loss"], prog_bar=True, logger=False) self.log( "global_step", self.global_step, logger=False, on_epoch=False, prog_bar=True, ) lr = self.optimizers().param_groups[0]["lr"] self.log( "lr_abs", lr, on_step=True, logger=True, on_epoch=False, prog_bar=True, ) def shared_step(self, batch, t=None): x, *_ = self.diffusion_model.get_input( batch, k=self.diffusion_model.first_stage_key ) targets = self.get_conditioning(batch) if targets.dim() == 4: targets = targets.argmax(dim=1) if t is None: t = torch.randint( 0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device, ).long() else: t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long() x_noisy = self.get_x_noisy(x, t) logits = self(x_noisy, t) loss = F.cross_entropy(logits, targets, reduction="none") self.write_logs(loss.detach(), logits.detach(), targets.detach()) loss = loss.mean() return loss, logits, x_noisy, targets def training_step(self, batch, batch_idx): loss, *_ = self.shared_step(batch) return loss def reset_noise_accs(self): self.noisy_acc = { t: {"acc@1": [], "acc@5": []} for t in range( 0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t, ) } def on_validation_start(self): self.reset_noise_accs() @torch.no_grad() def validation_step(self, batch, batch_idx): loss, *_ = self.shared_step(batch) for t in self.noisy_acc: _, logits, _, targets = self.shared_step(batch, t) self.noisy_acc[t]["acc@1"].append( self.compute_top_k(logits, targets, k=1, reduction="mean") ) self.noisy_acc[t]["acc@5"].append( self.compute_top_k(logits, targets, k=5, reduction="mean") ) return loss def configure_optimizers(self): optimizer = AdamW( self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay, ) if self.use_scheduler: scheduler = instantiate_from_config(self.scheduler_config) print("Setting up LambdaLR scheduler...") scheduler = [ { "scheduler": LambdaLR(optimizer, lr_lambda=scheduler.schedule), "interval": "step", "frequency": 1, } ] return [optimizer], scheduler return optimizer @torch.no_grad() def log_images(self, batch, N=8, *args, **kwargs): log = dict() x = self.get_input(batch, self.diffusion_model.first_stage_key) log["inputs"] = x y = self.get_conditioning(batch) if self.label_key == "class_label": y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) log["labels"] = y if ismap(y): log["labels"] = self.diffusion_model.to_rgb(y) for step in range(self.log_steps): current_time = step * self.log_time_interval _, logits, x_noisy, _ = self.shared_step(batch, t=current_time) log[f"inputs@t{current_time}"] = x_noisy pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes) pred = rearrange(pred, "b h w c -> b c h w") log[f"pred@t{current_time}"] = self.diffusion_model.to_rgb(pred) for key in log: log[key] = log[key][:N] return log