''' ldm.invoke.generator.txt2img inherits from ldm.invoke.generator ''' import torch import numpy as np import math from ldm.invoke.generator.base import Generator from ldm.models.diffusion.ddim import DDIMSampler class Txt2Img2Img(Generator): def __init__(self, model, precision): super().__init__(model, precision) self.init_latent = None # for get_noise() @torch.no_grad() def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta, conditioning,width,height,strength,step_callback=None,**kwargs): """ Returns a function returning an image derived from the prompt and the initial image Return value depends on the seed at the time you call it kwargs are 'width' and 'height' """ uc, c = conditioning @torch.no_grad() def make_image(x_T): scale_dim = min(width, height) scale = 512 / scale_dim init_width = math.ceil(scale * width / 64) * 64 init_height = math.ceil(scale * height / 64) * 64 shape = [ self.latent_channels, init_height // self.downsampling_factor, init_width // self.downsampling_factor, ] sampler.make_schedule( ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False ) #x = self.get_noise(init_width, init_height) x = x_T if self.free_gpu_mem and self.model.model.device != self.model.device: self.model.model.to(self.model.device) samples, _ = sampler.sample( batch_size = 1, S = steps, x_T = x, conditioning = c, shape = shape, verbose = False, unconditional_guidance_scale = cfg_scale, unconditional_conditioning = uc, eta = ddim_eta, img_callback = step_callback ) print( f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling" ) # resizing samples = torch.nn.functional.interpolate( samples, size=(height // self.downsampling_factor, width // self.downsampling_factor), mode="bilinear" ) t_enc = int(strength * steps) ddim_sampler = DDIMSampler(self.model, device=self.model.device) ddim_sampler.make_schedule( ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False ) z_enc = ddim_sampler.stochastic_encode( samples, torch.tensor([t_enc]).to(self.model.device), noise=self.get_noise(width,height,False) ) # decode it samples = ddim_sampler.decode( z_enc, c, t_enc, img_callback = step_callback, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=uc, ) if self.free_gpu_mem: self.model.model.to("cpu") return self.sample_to_image(samples) return make_image # returns a tensor filled with random numbers from a normal distribution def get_noise(self,width,height,scale = True): # print(f"Get noise: {width}x{height}") if scale: trained_square = 512 * 512 actual_square = width * height scale = math.sqrt(trained_square / actual_square) scaled_width = math.ceil(scale * width / 64) * 64 scaled_height = math.ceil(scale * height / 64) * 64 else: scaled_width = width scaled_height = height device = self.model.device if self.use_mps_noise or device.type == 'mps': return torch.randn([1, self.latent_channels, scaled_height // self.downsampling_factor, scaled_width // self.downsampling_factor], device='cpu').to(device) else: return torch.randn([1, self.latent_channels, scaled_height // self.downsampling_factor, scaled_width // self.downsampling_factor], device=device)