from math import ceil, floor, sqrt from typing import Optional import cv2 import numpy as np from PIL import Image class InitImageResizer: """Simple class to create resized copies of an Image while preserving the aspect ratio.""" def __init__(self, Image): self.image = Image def resize(self, width=None, height=None) -> Image.Image: """ Return a copy of the image resized to fit within a box width x height. The aspect ratio is maintained. If neither width nor height are provided, then returns a copy of the original image. If one or the other is provided, then the other will be calculated from the aspect ratio. Everything is floored to the nearest multiple of 64 so that it can be passed to img2img() """ im = self.image ar = im.width / float(im.height) # Infer missing values from aspect ratio if not (width or height): # both missing width = im.width height = im.height elif not height: # height missing height = int(width / ar) elif not width: # width missing width = int(height * ar) w_scale = width / im.width h_scale = height / im.height scale = min(w_scale, h_scale) (rw, rh) = (int(scale * im.width), int(scale * im.height)) # round everything to multiples of 64 width, height, rw, rh = (x - x % 64 for x in (width, height, rw, rh)) # no resize necessary, but return a copy if im.width == width and im.height == height: return im.copy() # otherwise resize the original image so that it fits inside the bounding box resized_image = self.image.resize((rw, rh), resample=Image.Resampling.LANCZOS) return resized_image def make_grid(image_list, rows=None, cols=None): image_cnt = len(image_list) if None in (rows, cols): rows = floor(sqrt(image_cnt)) # try to make it square cols = ceil(image_cnt / rows) width = image_list[0].width height = image_list[0].height grid_img = Image.new("RGB", (width * cols, height * rows)) i = 0 for r in range(0, rows): for c in range(0, cols): if i >= len(image_list): break grid_img.paste(image_list[i], (c * width, r * height)) i = i + 1 return grid_img def pil_to_np(image: Image.Image) -> np.ndarray: """Converts a PIL image to a numpy array.""" return np.array(image, dtype=np.uint8) def np_to_pil(image: np.ndarray) -> Image.Image: """Converts a numpy array to a PIL image.""" return Image.fromarray(image) def pil_to_cv2(image: Image.Image) -> np.ndarray: """Converts a PIL image to a CV2 image.""" return cv2.cvtColor(np.array(image, dtype=np.uint8), cv2.COLOR_RGB2BGR) def cv2_to_pil(image: np.ndarray) -> Image.Image: """Converts a CV2 image to a PIL image.""" return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) def normalize_image_channel_count(image: np.ndarray) -> np.ndarray: """Normalizes an image to have 3 channels. If the image has 1 channel, it will be duplicated 3 times. If the image has 1 channel, a third empty channel will be added. If the image has 4 channels, the alpha channel will be used to blend the image with a white background. Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license). Args: image: The input image. Returns: The normalized image. """ assert image.dtype == np.uint8 if image.ndim == 2: image = image[:, :, None] assert image.ndim == 3 _height, _width, channels = image.shape assert channels == 1 or channels == 3 or channels == 4 if channels == 3: return image if channels == 1: return np.concatenate([image, image, image], axis=2) if channels == 4: color = image[:, :, 0:3].astype(np.float32) alpha = image[:, :, 3:4].astype(np.float32) / 255.0 normalized = color * alpha + 255.0 * (1.0 - alpha) normalized = normalized.clip(0, 255).astype(np.uint8) return normalized raise ValueError("Invalid number of channels.") def resize_image_to_resolution(input_image: np.ndarray, resolution: int) -> np.ndarray: """Resizes an image, fitting it to the given resolution. Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license). Args: input_image: The input image. resolution: The resolution to fit the image to. Returns: The resized image. """ h = float(input_image.shape[0]) w = float(input_image.shape[1]) scaling_factor = float(resolution) / min(h, w) h = int(h * scaling_factor) w = int(w * scaling_factor) if scaling_factor > 1: return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_LANCZOS4) else: return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_AREA) def nms(np_img: np.ndarray, threshold: Optional[int] = None, sigma: Optional[float] = None) -> np.ndarray: """ Apply non-maximum suppression to an image. If both threshold and sigma are provided, the image will blurred before the suppression and thresholded afterwards, resulting in a binary output image. This function is adapted from https://github.com/lllyasviel/ControlNet. Args: image: The input image. threshold: The threshold value for the suppression. Pixels with values greater than this will be set to 255. sigma: The standard deviation for the Gaussian blur applied to the image. Returns: The image after non-maximum suppression. Raises: ValueError: If only one of threshold and sigma provided. """ # Raise a value error if only one of threshold and sigma is provided if (threshold is None) != (sigma is None): raise ValueError("Both threshold and sigma must be provided if one is provided.") if sigma is not None and threshold is not None: # Blurring the image can help to thin out features np_img = cv2.GaussianBlur(np_img.astype(np.float32), (0, 0), sigma) filter_1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) filter_2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) filter_3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) filter_4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) nms_img = np.zeros_like(np_img) for f in [filter_1, filter_2, filter_3, filter_4]: np.putmask(nms_img, cv2.dilate(np_img, kernel=f) == np_img, np_img) if sigma is not None and threshold is not None: # We blurred - now threshold to get a binary image thresholded = np.zeros_like(nms_img, dtype=np.uint8) thresholded[nms_img > threshold] = 255 return thresholded return nms_img def safe_step(x: np.ndarray, step: int = 2) -> np.ndarray: """Apply the safe step operation to an array. I don't fully understand the purpose of this function, but it appears to be normalizing/quantizing the array. Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license). Args: x: The input array. step: The step value. Returns: The array after the safe step operation. """ y = x.astype(np.float32) * float(step + 1) y = y.astype(np.int32).astype(np.float32) / float(step) return y