"""Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license).""" import cv2 import numpy as np import torch import torch.nn as nn from einops import rearrange from huggingface_hub import hf_hub_download from PIL import Image from invokeai.backend.image_util.util import ( fit_image_to_resolution, normalize_image_channel_count, np_to_pil, pil_to_np, ) class ResidualBlock(nn.Module): def __init__(self, in_features): super(ResidualBlock, self).__init__() conv_block = [ nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), nn.InstanceNorm2d(in_features), nn.ReLU(inplace=True), nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), nn.InstanceNorm2d(in_features), ] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): return x + self.conv_block(x) class Generator(nn.Module): def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): super(Generator, self).__init__() # Initial convolution block model0 = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), nn.InstanceNorm2d(64), nn.ReLU(inplace=True)] self.model0 = nn.Sequential(*model0) # Downsampling model1 = [] in_features = 64 out_features = in_features * 2 for _ in range(2): model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), nn.InstanceNorm2d(out_features), nn.ReLU(inplace=True), ] in_features = out_features out_features = in_features * 2 self.model1 = nn.Sequential(*model1) model2 = [] # Residual blocks for _ in range(n_residual_blocks): model2 += [ResidualBlock(in_features)] self.model2 = nn.Sequential(*model2) # Upsampling model3 = [] out_features = in_features // 2 for _ in range(2): model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), nn.InstanceNorm2d(out_features), nn.ReLU(inplace=True), ] in_features = out_features out_features = in_features // 2 self.model3 = nn.Sequential(*model3) # Output layer model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)] if sigmoid: model4 += [nn.Sigmoid()] self.model4 = nn.Sequential(*model4) def forward(self, x, cond=None): out = self.model0(x) out = self.model1(out) out = self.model2(out) out = self.model3(out) out = self.model4(out) return out class LineartProcessor: """Processor for lineart detection.""" def __init__(self): model_path = hf_hub_download("lllyasviel/Annotators", "sk_model.pth") self.model = Generator(3, 1, 3) self.model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) self.model.eval() coarse_model_path = hf_hub_download("lllyasviel/Annotators", "sk_model2.pth") self.model_coarse = Generator(3, 1, 3) self.model_coarse.load_state_dict(torch.load(coarse_model_path, map_location=torch.device("cpu"))) self.model_coarse.eval() def to(self, device: torch.device): self.model.to(device) self.model_coarse.to(device) return self def run( self, input_image: Image.Image, coarse: bool = False, detect_resolution: int = 512, image_resolution: int = 512 ) -> Image.Image: """Processes an image to detect lineart. Args: input_image: The input image. coarse: Whether to use the coarse model. detect_resolution: The resolution to fit the image to before edge detection. image_resolution: The resolution of the output image. Returns: The detected lineart. """ device = next(iter(self.model.parameters())).device np_image = pil_to_np(input_image) np_image = normalize_image_channel_count(np_image) np_image = fit_image_to_resolution(np_image, detect_resolution) model = self.model_coarse if coarse else self.model assert np_image.ndim == 3 image = np_image with torch.no_grad(): image = torch.from_numpy(image).float().to(device) image = image / 255.0 image = rearrange(image, "h w c -> 1 c h w") line = model(image)[0][0] line = line.cpu().numpy() line = (line * 255.0).clip(0, 255).astype(np.uint8) detected_map = line detected_map = normalize_image_channel_count(detected_map) img = fit_image_to_resolution(np_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) detected_map = 255 - detected_map return np_to_pil(detected_map)