""" Manage a RAM cache of diffusion/transformer models for fast switching. They are moved between GPU VRAM and CPU RAM as necessary. If the cache grows larger than a preset maximum, then the least recently used model will be cleared and (re)loaded from disk when next needed. The cache returns context manager generators designed to load the model into the GPU within the context, and unload outside the context. Use like this: cache = ModelCache(max_models_cached=6) with cache.get_model('runwayml/stable-diffusion-1-5') as SD1, cache.get_model('stabilityai/stable-diffusion-2') as SD2: do_something_in_GPU(SD1,SD2) """ import contextlib import gc import os import sys import hashlib import warnings from contextlib import suppress from enum import Enum from pathlib import Path from typing import Dict, Sequence, Union, types, Optional, List, Type, Any import torch from diffusers import DiffusionPipeline, SchedulerMixin, ConfigMixin from diffusers import logging as diffusers_logging from huggingface_hub import HfApi, scan_cache_dir from transformers import logging as transformers_logging import invokeai.backend.util.logging as logger from invokeai.app.services.config import get_invokeai_config from .lora import LoRAModel def get_model_path(repo_id_or_path: str): globals = get_invokeai_config() if os.path.exists(repo_id_or_path): return repo_id_or_path cache = scan_cache_dir(globals.cache_dir) for repo in cache.repos: if repo.repo_id != repo_id_or_path: continue for rev in repo.revisions: if "main" in rev.refs: return rev.snapshot_path raise Exception(f"{repo_id_or_path} - not found") def calc_model_size_by_fs( repo_id_or_path: str, subfolder: Optional[str] = None, variant: Optional[str] = None ): model_path = get_model_path(repo_id_or_path) if subfolder is not None: model_path = os.path.join(model_path, subfolder) all_files = os.listdir(model_path) all_files = [f for f in all_files if os.path.isfile(os.path.join(model_path, f))] fp16_files = set([f for f in all_files if ".fp16." in f or ".fp16-" in f]) bit8_files = set([f for f in all_files if ".8bit." in f or ".8bit-" in f]) other_files = set(all_files) - fp16_files - bit8_files if variant is None: files = other_files elif variant == "fp16": files = fp16_files elif variant == "8bit": files = bit8_files else: raise NotImplementedError(f"Unknown variant: {variant}") # try read from index if exists index_postfix = ".index.json" if variant is not None: index_postfix = f".index.{variant}.json" for file in files: if not file.endswith(index_postfix): continue try: with open(os.path.join(model_path, index_file), "r") as f: index_data = json.loads(f.read()) return int(index_data["metadata"]["total_size"]) except: pass # calculate files size if there is no index file formats = [ (".safetensors",), # safetensors (".bin",), # torch (".onnx", ".pb"), # onnx (".msgpack",), # flax (".ckpt",), # tf (".h5",), # tf2 ] for file_format in formats: model_files = [f for f in files if f.endswith(file_format)] if len(model_files) == 0: continue model_size = 0 for model_file in model_files: file_stats = os.stat(os.path.join(model_path, model_file)) model_size += file_stats.st_size return model_size #raise NotImplementedError(f"Unknown model structure! Files: {all_files}") return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu def calc_model_size_by_data(model) -> int: if isinstance(model, DiffusionPipeline): return _calc_pipeline_by_data(model) elif isinstance(model, torch.nn.Module): return _calc_model_by_data(model) else: return 0 def _calc_pipeline_by_data(pipeline) -> int: res = 0 for submodel_key in pipeline.components.keys(): submodel = getattr(pipeline, submodel_key) if submodel is not None and isinstance(submodel, torch.nn.Module): res += _calc_model_by_data(submodel) return res def _calc_model_by_data(model) -> int: mem_params = sum([param.nelement()*param.element_size() for param in model.parameters()]) mem_bufs = sum([buf.nelement()*buf.element_size() for buf in model.buffers()]) mem = mem_params + mem_bufs # in bytes return mem class SDModelType(str, Enum): Diffusers = "diffusers" Classifier = "classifier" UNet = "unet" TextEncoder = "text_encoder" Tokenizer = "tokenizer" Vae = "vae" Scheduler = "scheduler" Lora = "lora" class ModelInfoBase: #model_path: str #model_type: SDModelType def __init__(self, repo_id_or_path: str, model_type: SDModelType): self.repo_id_or_path = repo_id_or_path # TODO: or use allways path? self.model_path = get_model_path(repo_id_or_path) self.model_type = model_type def _definition_to_type(self, subtypes: List[str]) -> Type: if len(subtypes) < 2: raise Exception("Invalid subfolder definition!") if subtypes[0] in ["diffusers", "transformers"]: res_type = sys.modules[subtypes[0]] subtypes = subtypes[1:] else: res_type = sys.modules["diffusers"] res_type = getattr(res_type, "pipelines") for subtype in subtypes: res_type = getattr(res_type, subtype) return res_type class DiffusersModelInfo(ModelInfoBase): #child_types: Dict[str, Type] #child_sizes: Dict[str, int] def __init__(self, repo_id_or_path: str, model_type: SDModelType): assert model_type == SDModelType.Diffusers super().__init__(repo_id_or_path, model_type) self.child_types: Dict[str, Type] = dict() self.child_sizes: Dict[str, int] = dict() try: config_data = DiffusionPipeline.load_config(repo_id_or_path) #config_data = json.loads(os.path.join(self.model_path, "model_index.json")) except: raise Exception("Invalid diffusers model! (model_index.json not found or invalid)") config_data.pop("_ignore_files", None) # retrieve all folder_names that contain relevant files child_components = [k for k, v in config_data.items() if isinstance(v, list)] for child_name in child_components: child_type = self._definition_to_type(config_data[child_name]) self.child_types[child_name] = child_type self.child_sizes[child_name] = calc_model_size_by_fs(repo_id_or_path, subfolder=child_name) def get_size(self, child_type: Optional[SDModelType] = None): if child_type is None: return sum(self.child_sizes.values()) else: return self.child_sizes[child_type] def get_model( self, child_type: Optional[SDModelType] = None, torch_dtype: Optional[torch.dtype] = None, ): # return pipeline in different function to pass more arguments if child_type is None: raise Exception("Child model type can't be null on diffusers model") if child_type not in self.child_types: return None # TODO: or raise # TODO: for variant in ["fp16", "main", None]: try: model = self.child_types[child_type].from_pretrained( self.repo_id_or_path, subfolder=child_type.value, cache_dir=get_invokeai_config().cache_dir, torch_dtype=torch_dtype, variant=variant, ) break except Exception as e: print("====ERR LOAD====") print(f"{variant}: {e}") # calc more accurate size self.child_sizes[child_type] = calc_model_size_by_data(model) return model def get_pipeline(self, **kwargs): return DiffusionPipeline.from_pretrained( self.repo_id_or_path, **kwargs, ) class EmptyConfigLoader(ConfigMixin): @classmethod def load_config(cls, *args, **kwargs): cls.config_name = kwargs.pop("config_name") return super().load_config(*args, **kwargs) class ClassifierModelInfo(ModelInfoBase): #child_types: Dict[str, Type] #child_sizes: Dict[str, int] def __init__(self, repo_id_or_path: str, model_type: SDModelType): assert model_type == SDModelType.Classifier super().__init__(repo_id_or_path, model_type) self.child_types: Dict[str, Type] = dict() self.child_sizes: Dict[str, int] = dict() try: main_config = EmptyConfigLoader.load_config(repo_id_or_path, config_name="config.json") #main_config = json.loads(os.path.join(self.model_path, "config.json")) except: raise Exception("Invalid classifier model! (config.json not found or invalid)") self._load_tokenizer(main_config) self._load_text_encoder(main_config) self._load_feature_extractor(main_config) def _load_tokenizer(self, main_config: dict): try: tokenizer_config = EmptyConfigLoader.load_config(repo_id_or_path, config_name="tokenizer_config.json") #tokenizer_config = json.loads(os.path.join(self.model_path, "tokenizer_config.json")) except: raise Exception("Invalid classifier model! (Failed to load tokenizer_config.json)") if "tokenizer_class" in tokenizer_config: tokenizer_class_name = tokenizer_config["tokenizer_class"] elif "model_type" in main_config: tokenizer_class_name = transformers.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES[main_config["model_type"]] else: raise Exception("Invalid classifier model! (Failed to detect tokenizer type)") self.child_types[SDModelType.Tokenizer] = self._definition_to_type(["transformers", tokenizer_class_name]) self.child_sizes[SDModelType.Tokenizer] = 0 def _load_text_encoder(self, main_config: dict): if "architectures" in main_config and len(main_config["architectures"]) > 0: text_encoder_class_name = main_config["architectures"][0] elif "model_type" in main_config: text_encoder_class_name = transformers.models.auto.modeling_auto.MODEL_FOR_PRETRAINING_MAPPING_NAMES[main_config["model_type"]] else: raise Exception("Invalid classifier model! (Failed to detect text_encoder type)") self.child_types[SDModelType.TextEncoder] = self._definition_to_type(["transformers", text_encoder_class_name]) self.child_sizes[SDModelType.TextEncoder] = calc_model_size_by_fs(repo_id_or_path) def _load_feature_extractor(self, main_config: dict): self.child_sizes[SDModelType.FeatureExtractor] = 0 try: feature_extractor_config = EmptyConfigLoader.load_config(repo_id_or_path, config_name="preprocessor_config.json") except: return # feature extractor not passed with t5 try: feature_extractor_class_name = feature_extractor_config["feature_extractor_type"] self.child_types[SDModelType.FeatureExtractor] = self._definition_to_type(["transformers", feature_extractor_class_name]) except: raise Exception("Invalid classifier model! (Unknown feature_extrator type)") def get_size(self, child_type: Optional[SDModelType] = None): if child_type is None: return sum(self.child_sizes.values()) else: return self.child_sizes[child_type] def get_model( self, child_type: Optional[SDModelType] = None, torch_dtype: Optional[torch.dtype] = None, ): if child_type is None: raise Exception("Child model type can't be null on classififer model") if child_type not in self.child_types: return None # TODO: or raise model = self.child_types[child_type].from_pretrained( self.repo_id_or_path, subfolder=child_type.value, cache_dir=get_invokeai_config().cache_dir, torch_dtype=torch_dtype, ) # calc more accurate size self.child_sizes[child_type] = calc_model_size_by_data(model) return model class VaeModelInfo(ModelInfoBase): #vae_class: Type #model_size: int def __init__(self, repo_id_or_path: str, model_type: SDModelType): assert model_type == SDModelType.Vae super().__init__(repo_id_or_path, model_type) try: config = EmptyConfigLoader.load_config(repo_id_or_path, config_name="config.json") #config = json.loads(os.path.join(self.model_path, "config.json")) except: raise Exception("Invalid vae model! (config.json not found or invalid)") try: vae_class_name = config.get("_class_name", "AutoencoderKL") self.vae_class = self._definition_to_type(["diffusers", vae_class_name]) self.model_size = calc_model_size_by_fs(repo_id_or_path) except: raise Exception("Invalid vae model! (Unkown vae type)") def get_size(self, child_type: Optional[SDModelType] = None): if child_type is not None: raise Exception("There is no child models in vae model") return self.model_size def get_model( self, child_type: Optional[SDModelType] = None, torch_dtype: Optional[torch.dtype] = None, ): if child_type is not None: raise Exception("There is no child models in vae model") model = self.vae_class.from_pretrained( self.repo_id_or_path, cache_dir=get_invokeai_config().cache_dir, torch_dtype=torch_dtype, ) # calc more accurate size self.model_size = calc_model_size_by_data(model) return model class LoRAModelInfo(ModelInfoBase): #model_size: int def __init__(self, file_path: str, model_type: SDModelType): assert model_type == SDModelType.Lora # check manualy as super().__init__ will try to resolve repo_id too if not os.path.exists(file_path): raise Exception("Model not found") super().__init__(file_path, model_type) self.model_size = os.path.getsize(file_path) def get_size(self, child_type: Optional[SDModelType] = None): if child_type is not None: raise Exception("There is no child models in lora model") return self.model_size def get_model( self, child_type: Optional[SDModelType] = None, torch_dtype: Optional[torch.dtype] = None, ): if child_type is not None: raise Exception("There is no child models in lora model") model = LoRAModel.from_checkpoint( file_path=self.model_path, dtype=torch_dtype, ) self.model_size = model.calc_size() return model MODEL_TYPES = { SDModelType.Diffusers: DiffusersModelInfo, SDModelType.Classifier: ClassifierModelInfo, SDModelType.Vae: VaeModelInfo, SDModelType.Lora: LoRAModelInfo, } # Maximum size of the cache, in gigs # Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously DEFAULT_MAX_CACHE_SIZE = 6.0 # actual size of a gig GIG = 1073741824 # TODO: class EmptyScheduler(SchedulerMixin, ConfigMixin): pass class ModelLocker(object): "Forward declaration" pass class ModelCache(object): "Forward declaration" pass class _CacheRecord: size: int model: Any cache: ModelCache _locks: int def __init__(self, cache, model: Any, size: int): self.size = size self.model = model self.cache = cache self._locks = 0 def lock(self): self._locks += 1 def unlock(self): self._locks -= 1 assert self._locks >= 0 @property def locked(self): return self._locks > 0 @property def loaded(self): if self.model is not None and hasattr(self.model, "device"): return self.model.device != self.cache.storage_device else: return False class ModelCache(object): def __init__( self, max_cache_size: float=DEFAULT_MAX_CACHE_SIZE, execution_device: torch.device=torch.device('cuda'), storage_device: torch.device=torch.device('cpu'), precision: torch.dtype=torch.float16, sequential_offload: bool=False, lazy_offloading: bool=True, sha_chunksize: int = 16777216, logger: types.ModuleType = logger ): ''' :param max_models: Maximum number of models to cache in CPU RAM [4] :param execution_device: Torch device to load active model into [torch.device('cuda')] :param storage_device: Torch device to save inactive model in [torch.device('cpu')] :param precision: Precision for loaded models [torch.float16] :param lazy_offloading: Keep model in VRAM until another model needs to be loaded :param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially :param sha_chunksize: Chunksize to use when calculating sha256 model hash ''' #max_cache_size = 9999 execution_device = torch.device('cuda') self.model_infos: Dict[str, ModelInfoBase] = dict() self.lazy_offloading = lazy_offloading #self.sequential_offload: bool=sequential_offload self.precision: torch.dtype=precision self.max_cache_size: int=max_cache_size self.execution_device: torch.device=execution_device self.storage_device: torch.device=storage_device self.sha_chunksize=sha_chunksize self.logger = logger self._cached_models = dict() self._cache_stack = list() def get_key( self, model_path: str, model_type: SDModelType, revision: Optional[str] = None, submodel_type: Optional[SDModelType] = None, ): revision = revision or "main" key = f"{model_path}:{model_type}:{revision}" if submodel_type: key += f":{submodel_type}" return key #def get_model( # self, # repo_id_or_path: Union[str, Path], # model_type: SDModelType = SDModelType.Diffusers, # subfolder: Path = None, # submodel: SDModelType = None, # revision: str = None, # attach_model_part: Tuple[SDModelType, str] = (None, None), # gpu_load: bool = True, #) -> ModelLocker: # ?? what does it return def _get_model_info( self, model_path: str, model_type: SDModelType, revision: str, ): model_info_key = self.get_key( model_path=model_path, model_type=model_type, revision=revision, submodel_type=None, ) if model_info_key not in self.model_infos: if model_type not in MODEL_TYPES: raise Exception(f"Unknown/unsupported model type: {model_type}") self.model_infos[model_info_key] = MODEL_TYPES[model_type]( model_path, model_type, ) return self.model_infos[model_info_key] def get_model( self, repo_id_or_path: Union[str, Path], model_type: SDModelType = SDModelType.Diffusers, submodel: Optional[SDModelType] = None, revision: Optional[str] = None, variant: Optional[str] = None, gpu_load: bool = True, ) -> Any: model_path = get_model_path(repo_id_or_path) model_info = self._get_model_info( model_path=model_path, model_type=model_type, revision=revision, ) # TODO: variant key = self.get_key( model_path=model_path, model_type=model_type, revision=revision, submodel_type=submodel, ) # TODO: lock for no copies on simultaneous calls? cache_entry = self._cached_models.get(key, None) if cache_entry is None: self.logger.info(f'Loading model {repo_id_or_path}, type {model_type}:{submodel}') # this will remove older cached models until # there is sufficient room to load the requested model self._make_cache_room(model_info.get_size(submodel)) # clean memory to make MemoryUsage() more accurate gc.collect() model = model_info.get_model(submodel, torch_dtype=self.precision) if mem_used := model_info.get_size(submodel): self.logger.debug(f'CPU RAM used for load: {(mem_used/GIG):.2f} GB') cache_entry = _CacheRecord(self, model, mem_used) self._cached_models[key] = cache_entry with suppress(Exception): self._cache_stack.remove(key) self._cache_stack.append(key) return self.ModelLocker(self, key, cache_entry.model, gpu_load) class ModelLocker(object): def __init__(self, cache, key, model, gpu_load): self.gpu_load = gpu_load self.cache = cache self.key = key self.model = model def __enter__(self) -> Any: if not hasattr(self.model, 'to'): return self.model cache_entry = self.cache._cached_models[self.key] # NOTE that the model has to have the to() method in order for this # code to move it into GPU! if self.gpu_load: cache_entry.lock() try: if self.cache.lazy_offloading: self.cache._offload_unlocked_models() if self.model.device != self.cache.execution_device: self.cache.logger.debug(f'Moving {self.key} into {self.cache.execution_device}') with VRAMUsage() as mem: self.model.to(self.cache.execution_device) # move into GPU self.cache.logger.debug(f'GPU VRAM used for load: {(mem.vram_used/GIG):.2f} GB') self.cache.logger.debug(f'Locking {self.key} in {self.cache.execution_device}') self.cache._print_cuda_stats() except: cache_entry.unlock() raise # TODO: not fully understand # in the event that the caller wants the model in RAM, we # move it into CPU if it is in GPU and not locked elif cache_entry.loaded and not cache_entry.locked: self.model.to(self.cache.storage_device) return self.model def __exit__(self, type, value, traceback): if not hasattr(self.model, 'to'): return cache_entry = self.cache._cached_models[self.key] cache_entry.unlock() if not self.cache.lazy_offloading: self.cache._offload_unlocked_models() self.cache._print_cuda_stats() def model_hash( self, repo_id_or_path: Union[str, Path], revision: str = "main", ) -> str: ''' Given the HF repo id or path to a model on disk, returns a unique hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs :param repo_id_or_path: repo_id string or Path to model file/directory on disk. :param revision: optional revision string (if fetching a HF repo_id) ''' revision = revision or "main" if Path(repo_id_or_path).is_dir(): return self._local_model_hash(repo_id_or_path) else: return self._hf_commit_hash(repo_id_or_path,revision) def cache_size(self) -> float: "Return the current size of the cache, in GB" current_cache_size = sum([m.size for m in self._cached_models.values()]) return current_cache_size / GIG def _has_cuda(self) -> bool: return self.execution_device.type == 'cuda' def _print_cuda_stats(self): vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG) ram = "%4.2fG" % self.cache_size() cached_models = 0 loaded_models = 0 locked_models = 0 for model_info in self._cached_models.values(): cached_models += 1 if model_info.loaded: loaded_models += 1 if model_info.locked: locked_models += 1 self.logger.debug(f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}") def _make_cache_room(self, model_size): # calculate how much memory this model will require #multiplier = 2 if self.precision==torch.float32 else 1 bytes_needed = model_size maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes current_size = sum([m.size for m in self._cached_models.values()]) if current_size + bytes_needed > maximum_size: self.logger.debug(f'Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional {(bytes_needed/GIG):.2f} GB') self.logger.debug(f"Before unloading: cached_models={len(self._cached_models)}") pos = 0 while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack): model_key = self._cache_stack[pos] cache_entry = self._cached_models[model_key] refs = sys.getrefcount(cache_entry.model) device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None self.logger.debug(f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}, refs: {refs}") # 2 refs: # 1 from cache_entry # 1 from getrefcount function if not cache_entry.locked and refs <= 2: self.logger.debug(f'Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)') current_size -= cache_entry.size del self._cache_stack[pos] del self._cached_models[model_key] del cache_entry else: pos += 1 gc.collect() torch.cuda.empty_cache() self.logger.debug(f"After unloading: cached_models={len(self._cached_models)}") def _offload_unlocked_models(self): for model_key, cache_entry in self._cached_models.items(): if not cache_entry.locked and cache_entry.loaded: self.logger.debug(f'Offloading {model_key} from {self.execution_device} into {self.storage_device}') cache_entry.model.to(self.storage_device) def _local_model_hash(self, model_path: Union[str, Path]) -> str: sha = hashlib.sha256() path = Path(model_path) hashpath = path / "checksum.sha256" if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime: with open(hashpath) as f: hash = f.read() return hash self.logger.debug(f'computing hash of model {path.name}') for file in list(path.rglob("*.ckpt")) \ + list(path.rglob("*.safetensors")) \ + list(path.rglob("*.pth")): with open(file, "rb") as f: while chunk := f.read(self.sha_chunksize): sha.update(chunk) hash = sha.hexdigest() with open(hashpath, "w") as f: f.write(hash) return hash def _hf_commit_hash(self, repo_id: str, revision: str='main') -> str: api = HfApi() info = api.list_repo_refs( repo_id=repo_id, repo_type='model', ) desired_revisions = [branch for branch in info.branches if branch.name==revision] if not desired_revisions: raise KeyError(f"Revision '{revision}' not found in {repo_id}") return desired_revisions[0].target_commit class SilenceWarnings(object): def __init__(self): self.transformers_verbosity = transformers_logging.get_verbosity() self.diffusers_verbosity = diffusers_logging.get_verbosity() def __enter__(self): transformers_logging.set_verbosity_error() diffusers_logging.set_verbosity_error() warnings.simplefilter('ignore') def __exit__(self,type,value,traceback): transformers_logging.set_verbosity(self.transformers_verbosity) diffusers_logging.set_verbosity(self.diffusers_verbosity) warnings.simplefilter('default') class VRAMUsage(object): def __init__(self): self.vram = None self.vram_used = 0 def __enter__(self): self.vram = torch.cuda.memory_allocated() return self def __exit__(self, *args): self.vram_used = torch.cuda.memory_allocated() - self.vram