model: base_learning_rate: 5.0e-03 target: invokeai.backend.models.diffusion.ddpm.LatentDiffusion params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: caption image_size: 64 channels: 4 cond_stage_trainable: true # Note: different from the one we trained before conditioning_key: crossattn monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: False embedding_reg_weight: 0.0 personalization_config: target: invokeai.backend.ldm.modules.embedding_manager.EmbeddingManager params: placeholder_strings: ["*"] initializer_words: ["painting"] per_image_tokens: false num_vectors_per_token: 1 unet_config: target: invokeai.backend.ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 # unused in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False first_stage_config: target: invokeai.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: invokeai.backend.ldm.modules.encoders.modules.FrozenCLIPEmbedder data: target: main.DataModuleFromConfig params: batch_size: 2 num_workers: 16 wrap: false train: target: invokeai.backend.ldm.data.personalized_style.PersonalizedBase params: size: 512 set: train per_image_tokens: false repeats: 100 validation: target: invokeai.backend.ldm.data.personalized_style.PersonalizedBase params: size: 512 set: val per_image_tokens: false repeats: 10 lightning: callbacks: image_logger: target: main.ImageLogger params: batch_frequency: 500 max_images: 8 increase_log_steps: False trainer: benchmark: True