import unittest from typing import Union import torch from invokeai.backend.stable_diffusion import TextualInversionManager KNOWN_WORDS = ['a', 'b', 'c'] KNOWN_WORDS_TOKEN_IDS = [0, 1, 2] UNKNOWN_WORDS = ['d', 'e', 'f'] class DummyEmbeddingsList(list): def __getattr__(self, name): if name == 'num_embeddings': return len(self) elif name == 'weight': return self elif name == 'data': return self def make_dummy_embedding(): return torch.randn([768]) class DummyTransformer: def __init__(self): self.embeddings = DummyEmbeddingsList([make_dummy_embedding() for _ in range(len(KNOWN_WORDS))]) def resize_token_embeddings(self, new_size=None): if new_size is None: return self.embeddings else: while len(self.embeddings) > new_size: self.embeddings.pop(-1) while len(self.embeddings) < new_size: self.embeddings.append(make_dummy_embedding()) def get_input_embeddings(self): return self.embeddings class DummyTokenizer(): def __init__(self): self.tokens = KNOWN_WORDS.copy() self.bos_token_id = 49406 # these are what the real CLIPTokenizer has self.eos_token_id = 49407 self.pad_token_id = 49407 self.unk_token_id = 49407 def convert_tokens_to_ids(self, token_str): try: return self.tokens.index(token_str) except ValueError: return self.unk_token_id def add_tokens(self, token_str): if token_str in self.tokens: return 0 self.tokens.append(token_str) return 1 class DummyClipEmbedder: def __init__(self): self.max_length = 77 self.transformer = DummyTransformer() self.tokenizer = DummyTokenizer() self.position_embeddings_tensor = torch.randn([77,768], dtype=torch.float32) def position_embedding(self, indices: Union[list,torch.Tensor]): if type(indices) is list: indices = torch.tensor(indices, dtype=int) return torch.index_select(self.position_embeddings_tensor, 0, indices) def was_embedding_overwritten_correctly(tim: TextualInversionManager, overwritten_embedding: torch.Tensor, ti_indices: list, ti_embedding: torch.Tensor) -> bool: return torch.allclose(overwritten_embedding[ti_indices], ti_embedding + tim.clip_embedder.position_embedding(ti_indices)) def make_dummy_textual_inversion_manager(): return TextualInversionManager( tokenizer=DummyTokenizer(), text_encoder=DummyTransformer() ) class TextualInversionManagerTestCase(unittest.TestCase): def test_construction(self): tim = make_dummy_textual_inversion_manager() def test_add_embedding_for_known_token(self): tim = make_dummy_textual_inversion_manager() test_embedding = torch.randn([1, 768]) test_embedding_name = KNOWN_WORDS[0] self.assertFalse(tim.has_textual_inversion_for_trigger_string(test_embedding_name)) pre_embeddings_count = len(tim.text_encoder.resize_token_embeddings(None)) ti = tim._add_textual_inversion(test_embedding_name, test_embedding) self.assertEqual(ti.trigger_token_id, 0) # check adding 'test' did not create a new word embeddings_count = len(tim.text_encoder.resize_token_embeddings(None)) self.assertEqual(pre_embeddings_count, embeddings_count) # check it was added self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name)) textual_inversion = tim.get_textual_inversion_for_trigger_string(test_embedding_name) self.assertIsNotNone(textual_inversion) self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding)) self.assertEqual(textual_inversion.trigger_string, test_embedding_name) self.assertEqual(textual_inversion.trigger_token_id, ti.trigger_token_id) def test_add_embedding_for_unknown_token(self): tim = make_dummy_textual_inversion_manager() test_embedding_1 = torch.randn([1, 768]) test_embedding_name_1 = UNKNOWN_WORDS[0] pre_embeddings_count = len(tim.text_encoder.resize_token_embeddings(None)) added_token_id_1 = tim._add_textual_inversion(test_embedding_name_1, test_embedding_1).trigger_token_id # new token id should get added on the end self.assertEqual(added_token_id_1, len(KNOWN_WORDS)) # check adding did create a new word embeddings_count = len(tim.text_encoder.resize_token_embeddings(None)) self.assertEqual(pre_embeddings_count+1, embeddings_count) # check it was added self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name_1)) textual_inversion = next(ti for ti in tim.textual_inversions if ti.trigger_token_id == added_token_id_1) self.assertIsNotNone(textual_inversion) self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding_1)) self.assertEqual(textual_inversion.trigger_string, test_embedding_name_1) self.assertEqual(textual_inversion.trigger_token_id, added_token_id_1) # add another one test_embedding_2 = torch.randn([1, 768]) test_embedding_name_2 = UNKNOWN_WORDS[1] pre_embeddings_count = len(tim.text_encoder.resize_token_embeddings(None)) added_token_id_2 = tim._add_textual_inversion(test_embedding_name_2, test_embedding_2).trigger_token_id self.assertEqual(added_token_id_2, len(KNOWN_WORDS)+1) # check adding did create a new word embeddings_count = len(tim.text_encoder.resize_token_embeddings(None)) self.assertEqual(pre_embeddings_count+1, embeddings_count) # check it was added self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name_2)) textual_inversion = next(ti for ti in tim.textual_inversions if ti.trigger_token_id == added_token_id_2) self.assertIsNotNone(textual_inversion) self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding_2)) self.assertEqual(textual_inversion.trigger_string, test_embedding_name_2) self.assertEqual(textual_inversion.trigger_token_id, added_token_id_2) # check the old one is still there self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name_1)) textual_inversion = next(ti for ti in tim.textual_inversions if ti.trigger_token_id == added_token_id_1) self.assertIsNotNone(textual_inversion) self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding_1)) self.assertEqual(textual_inversion.trigger_string, test_embedding_name_1) self.assertEqual(textual_inversion.trigger_token_id, added_token_id_1) def test_pad_raises_on_eos_bos(self): tim = make_dummy_textual_inversion_manager() prompt_token_ids_with_eos_bos = [tim.tokenizer.bos_token_id] + \ [KNOWN_WORDS_TOKEN_IDS] + \ [tim.tokenizer.eos_token_id] with self.assertRaises(ValueError): tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_with_eos_bos) def test_pad_tokens_list_vector_length_1(self): tim = make_dummy_textual_inversion_manager() prompt_token_ids = KNOWN_WORDS_TOKEN_IDS.copy() expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids) self.assertEqual(prompt_token_ids, expanded_prompt_token_ids) test_embedding_1v = torch.randn([1, 768]) test_embedding_1v_token = "<inversion-trigger-vector-length-1>" test_embedding_1v_token_id = tim._add_textual_inversion(test_embedding_1v_token, test_embedding_1v).trigger_token_id self.assertEqual(test_embedding_1v_token_id, len(KNOWN_WORDS)) # at the end prompt_token_ids_1v_append = prompt_token_ids + [test_embedding_1v_token_id] expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_1v_append) self.assertEqual(prompt_token_ids_1v_append, expanded_prompt_token_ids) # at the start prompt_token_ids_1v_prepend = [test_embedding_1v_token_id] + prompt_token_ids expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_1v_prepend) self.assertEqual(prompt_token_ids_1v_prepend, expanded_prompt_token_ids) # in the middle prompt_token_ids_1v_insert = prompt_token_ids[0:2] + [test_embedding_1v_token_id] + prompt_token_ids[2:3] expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_1v_insert) self.assertEqual(prompt_token_ids_1v_insert, expanded_prompt_token_ids) def test_pad_tokens_list_vector_length_2(self): tim = make_dummy_textual_inversion_manager() prompt_token_ids = KNOWN_WORDS_TOKEN_IDS.copy() expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids) self.assertEqual(prompt_token_ids, expanded_prompt_token_ids) test_embedding_2v = torch.randn([2, 768]) test_embedding_2v_token = "<inversion-trigger-vector-length-2>" test_embedding_2v_token_id = tim._add_textual_inversion(test_embedding_2v_token, test_embedding_2v).trigger_token_id test_embedding_2v_pad_token_ids = tim.get_textual_inversion_for_token_id(test_embedding_2v_token_id).pad_token_ids self.assertEqual(test_embedding_2v_token_id, len(KNOWN_WORDS)) # at the end prompt_token_ids_2v_append = prompt_token_ids + [test_embedding_2v_token_id] expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_2v_append) self.assertNotEqual(prompt_token_ids_2v_append, expanded_prompt_token_ids) self.assertEqual(prompt_token_ids + [test_embedding_2v_token_id] + test_embedding_2v_pad_token_ids, expanded_prompt_token_ids) # at the start prompt_token_ids_2v_prepend = [test_embedding_2v_token_id] + prompt_token_ids expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_2v_prepend) self.assertNotEqual(prompt_token_ids_2v_prepend, expanded_prompt_token_ids) self.assertEqual([test_embedding_2v_token_id] + test_embedding_2v_pad_token_ids + prompt_token_ids, expanded_prompt_token_ids) # in the middle prompt_token_ids_2v_insert = prompt_token_ids[0:2] + [test_embedding_2v_token_id] + prompt_token_ids[2:3] expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_2v_insert) self.assertNotEqual(prompt_token_ids_2v_insert, expanded_prompt_token_ids) self.assertEqual(prompt_token_ids[0:2] + [test_embedding_2v_token_id] + test_embedding_2v_pad_token_ids + prompt_token_ids[2:3], expanded_prompt_token_ids) def test_pad_tokens_list_vector_length_8(self): tim = make_dummy_textual_inversion_manager() prompt_token_ids = KNOWN_WORDS_TOKEN_IDS.copy() expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids) self.assertEqual(prompt_token_ids, expanded_prompt_token_ids) test_embedding_8v = torch.randn([8, 768]) test_embedding_8v_token = "<inversion-trigger-vector-length-8>" test_embedding_8v_token_id = tim._add_textual_inversion(test_embedding_8v_token, test_embedding_8v).trigger_token_id test_embedding_8v_pad_token_ids = tim.get_textual_inversion_for_token_id(test_embedding_8v_token_id).pad_token_ids self.assertEqual(test_embedding_8v_token_id, len(KNOWN_WORDS)) # at the end prompt_token_ids_8v_append = prompt_token_ids + [test_embedding_8v_token_id] expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_8v_append) self.assertNotEqual(prompt_token_ids_8v_append, expanded_prompt_token_ids) self.assertEqual(prompt_token_ids + [test_embedding_8v_token_id] + test_embedding_8v_pad_token_ids, expanded_prompt_token_ids) # at the start prompt_token_ids_8v_prepend = [test_embedding_8v_token_id] + prompt_token_ids expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_8v_prepend) self.assertNotEqual(prompt_token_ids_8v_prepend, expanded_prompt_token_ids) self.assertEqual([test_embedding_8v_token_id] + test_embedding_8v_pad_token_ids + prompt_token_ids, expanded_prompt_token_ids) # in the middle prompt_token_ids_8v_insert = prompt_token_ids[0:2] + [test_embedding_8v_token_id] + prompt_token_ids[2:3] expanded_prompt_token_ids = tim.expand_textual_inversion_token_ids_if_necessary(prompt_token_ids=prompt_token_ids_8v_insert) self.assertNotEqual(prompt_token_ids_8v_insert, expanded_prompt_token_ids) self.assertEqual(prompt_token_ids[0:2] + [test_embedding_8v_token_id] + test_embedding_8v_pad_token_ids + prompt_token_ids[2:3], expanded_prompt_token_ids) def test_deferred_loading(self): tim = make_dummy_textual_inversion_manager() test_embedding = torch.randn([1, 768]) test_embedding_name = UNKNOWN_WORDS[0] self.assertFalse(tim.has_textual_inversion_for_trigger_string(test_embedding_name)) pre_embeddings_count = len(tim.text_encoder.resize_token_embeddings(None)) ti = tim._add_textual_inversion(test_embedding_name, test_embedding, defer_injecting_tokens=True) self.assertIsNone(ti.trigger_token_id) # check that a new word is not yet created embeddings_count = len(tim.text_encoder.resize_token_embeddings(None)) self.assertEqual(pre_embeddings_count, embeddings_count) # check it was added self.assertTrue(tim.has_textual_inversion_for_trigger_string(test_embedding_name)) textual_inversion = tim.get_textual_inversion_for_trigger_string(test_embedding_name) self.assertIsNotNone(textual_inversion) self.assertTrue(torch.equal(textual_inversion.embedding, test_embedding)) self.assertEqual(textual_inversion.trigger_string, test_embedding_name) self.assertIsNone(textual_inversion.trigger_token_id, ti.trigger_token_id) # check it lazy-loads prompt = " ".join([KNOWN_WORDS[0], UNKNOWN_WORDS[0], KNOWN_WORDS[1]]) tim.create_deferred_token_ids_for_any_trigger_terms(prompt) embeddings_count = len(tim.text_encoder.resize_token_embeddings(None)) self.assertEqual(pre_embeddings_count+1, embeddings_count) textual_inversion = tim.get_textual_inversion_for_trigger_string(test_embedding_name) self.assertEqual(textual_inversion.trigger_string, test_embedding_name) self.assertEqual(textual_inversion.trigger_token_id, len(KNOWN_WORDS))