from typing import Optional
from pydantic import BaseModel, Extra, Field, StrictFloat, StrictInt, StrictStr


class ImageMetadata(BaseModel):
    """
    Core generation metadata for an image/tensor generated in InvokeAI.

    Also includes any metadata from the image's PNG tEXt chunks.

    Generated by traversing the execution graph, collecting the parameters of the nearest ancestors
    of a given node.

    Full metadata may be accessed by querying for the session in the `graph_executions` table.
    """

    class Config:
        extra = Extra.allow
        """
        This lets the ImageMetadata class accept arbitrary additional fields. The CoreMetadataService
        won't add any fields that are not already defined, but other a different metadata service
        implementation might.
        """

    type: Optional[StrictStr] = Field(
        default=None,
        description="The type of the ancestor node of the image output node.",
    )
    """The type of the ancestor node of the image output node."""
    positive_conditioning: Optional[StrictStr] = Field(
        default=None, description="The positive conditioning."
    )
    """The positive conditioning"""
    negative_conditioning: Optional[StrictStr] = Field(
        default=None, description="The negative conditioning."
    )
    """The negative conditioning"""
    width: Optional[StrictInt] = Field(
        default=None, description="Width of the image/latents in pixels."
    )
    """Width of the image/latents in pixels"""
    height: Optional[StrictInt] = Field(
        default=None, description="Height of the image/latents in pixels."
    )
    """Height of the image/latents in pixels"""
    seed: Optional[StrictInt] = Field(
        default=None, description="The seed used for noise generation."
    )
    """The seed used for noise generation"""
    cfg_scale: Optional[StrictFloat] = Field(
        default=None, description="The classifier-free guidance scale."
    )
    """The classifier-free guidance scale"""
    steps: Optional[StrictInt] = Field(
        default=None, description="The number of steps used for inference."
    )
    """The number of steps used for inference"""
    scheduler: Optional[StrictStr] = Field(
        default=None, description="The scheduler used for inference."
    )
    """The scheduler used for inference"""
    model: Optional[StrictStr] = Field(
        default=None, description="The model used for inference."
    )
    """The model used for inference"""
    strength: Optional[StrictFloat] = Field(
        default=None,
        description="The strength used for image-to-image/latents-to-latents.",
    )
    """The strength used for image-to-image/latents-to-latents."""
    latents: Optional[StrictStr] = Field(
        default=None, description="The ID of the initial latents."
    )
    """The ID of the initial latents"""
    vae: Optional[StrictStr] = Field(
        default=None, description="The VAE used for decoding."
    )
    """The VAE used for decoding"""
    unet: Optional[StrictStr] = Field(
        default=None, description="The UNet used dor inference."
    )
    """The UNet used dor inference"""
    clip: Optional[StrictStr] = Field(
        default=None, description="The CLIP Encoder used for conditioning."
    )
    """The CLIP Encoder used for conditioning"""
    extra: Optional[StrictStr] = Field(
        default=None,
        description="Uploaded image metadata, extracted from the PNG tEXt chunk.",
    )
    """Uploaded image metadata, extracted from the PNG tEXt chunk."""