model: base_learning_rate: 7.5e-05 target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: "jpg" cond_stage_key: "txt" image_size: 64 channels: 4 cond_stage_trainable: false # Note: different from the one we trained before conditioning_key: hybrid # important monitor: val/loss_simple_ema scale_factor: 0.18215 finetune_keys: null scheduler_config: # 10000 warmup steps target: ldm.lr_scheduler.LambdaLinearScheduler params: warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases f_start: [ 1.e-6 ] f_max: [ 1. ] f_min: [ 1. ] personalization_config: target: ldm.modules.embedding_manager.EmbeddingManager params: placeholder_strings: ["*"] initializer_words: ['sculpture'] per_image_tokens: false num_vectors_per_token: 1 progressive_words: False unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 # unused in_channels: 9 # 4 data + 4 downscaled image + 1 mask out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.WeightedFrozenCLIPEmbedder