--- title: Manual Installation, Linux --- # :fontawesome-brands-linux: Linux ## Installation 1. You will need to install the following prerequisites if they are not already available. Use your operating system's preferred installer. - Python (version 3.8.5 recommended; higher may work) - git 2. Install the Python Anaconda environment manager. ```bash ~$ wget https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh ~$ chmod +x Anaconda3-2022.05-Linux-x86_64.sh ~$ ./Anaconda3-2022.05-Linux-x86_64.sh ``` After installing anaconda, you should log out of your system and log back in. If the installation worked, your command prompt will be prefixed by the name of the current anaconda environment - `(base)`. 3. Copy the InvokeAI source code from GitHub: ```bash (base) ~$ git clone https://github.com/invoke-ai/InvokeAI.git ``` This will create InvokeAI folder where you will follow the rest of the steps. 4. Enter the newly-created InvokeAI folder. From this step forward make sure that you are working in the InvokeAI directory! ```bash (base) ~$ cd InvokeAI (base) ~/InvokeAI$ ``` 5. Use anaconda to copy necessary python packages, create a new python environment named `invokeai` and activate the environment. ```bash (base) ~/InvokeAI$ conda env create (base) ~/InvokeAI$ conda activate invokeai (invokeai) ~/InvokeAI$ ``` After these steps, your command prompt will be prefixed by `(invokeai)` as shown above. 6. Load a couple of small machine-learning models required by stable diffusion: ```bash (invokeai) ~/InvokeAI$ python3 scripts/preload_models.py ``` !!! note This step is necessary because I modified the original just-in-time model loading scheme to allow the script to work on GPU machines that are not internet connected. See [Preload Models](../features/OTHER.md#preload-models) 7. Install the weights for the stable diffusion model. - Sign up at https://huggingface.co - Go to the [Stable diffusion diffusion model page](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original) - Accept the terms and click Access Repository - Download [v1-5-pruned-emaonly.ckpt (4.27 GB)](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt) and move it into this directory under `models/ldm/stable_diffusion_v1/v1-5-pruned-emaonly.ckpt` There are many other models that you can use. Please see [../features/INSTALLING_MODELS.md] for details. 8. Start generating images! ```bash # for the pre-release weights use the -l or --liaon400m switch (invokeai) ~/InvokeAI$ python3 scripts/invoke.py -l # for the post-release weights do not use the switch (invokeai) ~/InvokeAI$ python3 scripts/invoke.py # for additional configuration switches and arguments, use -h or --help (invokeai) ~/InvokeAI$ python3 scripts/invoke.py -h ``` 9. Subsequently, to relaunch the script, be sure to run "conda activate invokeai" (step 5, second command), enter the `InvokeAI` directory, and then launch the invoke script (step 8). If you forget to activate the 'invokeai' environment, the script will fail with multiple `ModuleNotFound` errors. ## Updating to newer versions of the script This distribution is changing rapidly. If you used the `git clone` method (step 5) to download the InvokeAI directory, then to update to the latest and greatest version, launch the Anaconda window, enter `InvokeAI` and type: ```bash (invokeai) ~/InvokeAI$ git pull (invokeai) ~/InvokeAI$ conda env update -f environment.yml ``` This will bring your local copy into sync with the remote one.