"""This module manages the InvokeAI `models.yaml` file, mapping symbolic diffusers model names to the paths and repo_ids used by the underlying `from_pretrained()` call. SYNOPSIS: mgr = ModelManager('/home/phi/invokeai/configs/models.yaml') sd1_5 = mgr.get_model('stable-diffusion-v1-5', model_type=ModelType.Main, base_model=BaseModelType.StableDiffusion1, submodel_type=SubModelType.Unet) with sd1_5 as unet: run_some_inference(unet) FETCHING MODELS: Models are described using four attributes: 1) model_name -- the symbolic name for the model 2) ModelType -- an enum describing the type of the model. Currently defined types are: ModelType.Main -- a full model capable of generating images ModelType.Vae -- a VAE model ModelType.Lora -- a LoRA or LyCORIS fine-tune ModelType.TextualInversion -- a textual inversion embedding ModelType.ControlNet -- a ControlNet model 3) BaseModelType -- an enum indicating the stable diffusion base model, one of: BaseModelType.StableDiffusion1 BaseModelType.StableDiffusion2 4) SubModelType (optional) -- an enum that refers to one of the submodels contained within the main model. Values are: SubModelType.UNet SubModelType.TextEncoder SubModelType.Tokenizer SubModelType.Scheduler SubModelType.SafetyChecker To fetch a model, use `manager.get_model()`. This takes the symbolic name of the model, the ModelType, the BaseModelType and the SubModelType. The latter is required for ModelType.Main. get_model() will return a ModelInfo object that can then be used in context to retrieve the model and move it into GPU VRAM (on GPU systems). A typical example is: sd1_5 = mgr.get_model('stable-diffusion-v1-5', model_type=ModelType.Main, base_model=BaseModelType.StableDiffusion1, submodel_type=SubModelType.UNet) with sd1_5 as unet: run_some_inference(unet) The ModelInfo object provides a number of useful fields describing the model, including: name -- symbolic name of the model base_model -- base model (BaseModelType) type -- model type (ModelType) location -- path to the model file precision -- torch precision of the model hash -- unique sha256 checksum for this model SUBMODELS: When fetching a main model, you must specify the submodel. Retrieval of full pipelines is not supported. vae_info = mgr.get_model('stable-diffusion-1.5', model_type = ModelType.Main, base_model = BaseModelType.StableDiffusion1, submodel_type = SubModelType.Vae ) with vae_info as vae: do_something(vae) This rule does not apply to controlnets, embeddings, loras and standalone VAEs, which do not have submodels. LISTING MODELS The model_names() method will return a list of Tuples describing each model it knows about: >> mgr.model_names() [ ('stable-diffusion-1.5', , ), ('stable-diffusion-2.1', , ), ('inpaint', , ) ('Ink scenery', , ) ... ] The tuple is in the correct order to pass to get_model(): for m in mgr.model_names(): info = get_model(*m) In contrast, the list_models() method returns a list of dicts, each providing information about a model defined in models.yaml. For example: >>> models = mgr.list_models() >>> json.dumps(models[0]) {"path": "/home/lstein/invokeai-main/models/sd-1/controlnet/canny", "model_format": "diffusers", "name": "canny", "base_model": "sd-1", "type": "controlnet" } You can filter by model type and base model as shown here: controlnets = mgr.list_models(model_type=ModelType.ControlNet, base_model=BaseModelType.StableDiffusion1) for c in controlnets: name = c['name'] format = c['model_format'] path = c['path'] type = c['type'] # etc ADDING AND REMOVING MODELS At startup time, the `models` directory will be scanned for checkpoints, diffusers pipelines, controlnets, LoRAs and TI embeddings. New entries will be added to the model manager and defunct ones removed. Anything that is a main model (ModelType.Main) will be added to models.yaml. For scanning to succeed, files need to be in their proper places. For example, a controlnet folder built on the stable diffusion 2 base, will need to be placed in `models/sd-2/controlnet`. Layout of the `models` directory: models ├── sd-1 │   ├── controlnet │   ├── lora │   ├── main │   └── embedding ├── sd-2 │   ├── controlnet │   ├── lora │   ├── main │ └── embedding └── core ├── face_reconstruction │ ├── codeformer │ └── gfpgan ├── sd-conversion │ ├── clip-vit-large-patch14 - tokenizer, text_encoder subdirs │ ├── stable-diffusion-2 - tokenizer, text_encoder subdirs │ └── stable-diffusion-safety-checker └── upscaling └─── esrgan class ConfigMeta(BaseModel):Loras, textual_inversion and controlnet models are not listed explicitly in models.yaml, but are added to the in-memory data structure at initialization time by scanning the models directory. The in-memory data structure can be resynchronized by calling `manager.scan_models_directory()`. Files and folders placed inside the `autoimport` paths (paths defined in `invokeai.yaml`) will also be scanned for new models at initialization time and added to `models.yaml`. Files will not be moved from this location but preserved in-place. These directories are: configuration default description ------------- ------- ----------- autoimport_dir autoimport/main main models lora_dir autoimport/lora LoRA/LyCORIS models embedding_dir autoimport/embedding TI embeddings controlnet_dir autoimport/controlnet ControlNet models In actuality, models located in any of these directories are scanned to determine their type, so it isn't strictly necessary to organize the different types in this way. This entry in `invokeai.yaml` will recursively scan all subdirectories within `autoimport`, scan models files it finds, and import them if recognized. Paths: autoimport_dir: autoimport A model can be manually added using `add_model()` using the model's name, base model, type and a dict of model attributes. See `invokeai/backend/model_management/models` for the attributes required by each model type. A model can be deleted using `del_model()`, providing the same identifying information as `get_model()` The `heuristic_import()` method will take a set of strings corresponding to local paths, remote URLs, and repo_ids, probe the object to determine what type of model it is (if any), and import new models into the manager. If passed a directory, it will recursively scan it for models to import. The return value is a set of the models successfully added. MODELS.YAML The general format of a models.yaml section is: type-of-model/name-of-model: path: /path/to/local/file/or/directory description: a description format: diffusers|checkpoint variant: normal|inpaint|depth The type of model is given in the stanza key, and is one of {main, vae, lora, controlnet, textual} The format indicates whether the model is organized as a diffusers folder with model subdirectories, or is contained in a single checkpoint or safetensors file. The path points to a file or directory on disk. If a relative path, the root is the InvokeAI ROOTDIR. """ from __future__ import annotations import os import hashlib import textwrap import yaml from dataclasses import dataclass from pathlib import Path from typing import Optional, List, Tuple, Union, Dict, Set, Callable, types from shutil import rmtree, move import torch from omegaconf import OmegaConf from omegaconf.dictconfig import DictConfig from pydantic import BaseModel, Field import invokeai.backend.util.logging as logger from invokeai.app.services.config import InvokeAIAppConfig from invokeai.backend.util import CUDA_DEVICE, Chdir from .model_cache import ModelCache, ModelLocker from .models import ( BaseModelType, ModelType, SubModelType, ModelError, SchedulerPredictionType, MODEL_CLASSES, ModelConfigBase, ModelNotFoundException, InvalidModelException, ) # We are only starting to number the config file with release 3. # The config file version doesn't have to start at release version, but it will help # reduce confusion. CONFIG_FILE_VERSION='3.0.0' @dataclass class ModelInfo(): context: ModelLocker name: str base_model: BaseModelType type: ModelType hash: str location: Union[Path, str] precision: torch.dtype _cache: ModelCache = None def __enter__(self): return self.context.__enter__() def __exit__(self,*args, **kwargs): self.context.__exit__(*args, **kwargs) class AddModelResult(BaseModel): name: str = Field(description="The name of the model after installation") model_type: ModelType = Field(description="The type of model") base_model: BaseModelType = Field(description="The base model") config: ModelConfigBase = Field(description="The configuration of the model") MAX_CACHE_SIZE = 6.0 # GB class ConfigMeta(BaseModel): version: str class ModelManager(object): """ High-level interface to model management. """ logger: types.ModuleType = logger def __init__( self, config: Union[Path, DictConfig, str], device_type: torch.device = CUDA_DEVICE, precision: torch.dtype = torch.float16, max_cache_size=MAX_CACHE_SIZE, sequential_offload=False, logger: types.ModuleType = logger, ): """ Initialize with the path to the models.yaml config file. Optional parameters are the torch device type, precision, max_models, and sequential_offload boolean. Note that the default device type and precision are set up for a CUDA system running at half precision. """ self.config_path = None if isinstance(config, (str, Path)): self.config_path = Path(config) if not self.config_path.exists(): logger.warning(f'The file {self.config_path} was not found. Initializing a new file') self.initialize_model_config(self.config_path) config = OmegaConf.load(self.config_path) elif not isinstance(config, DictConfig): raise ValueError('config argument must be an OmegaConf object, a Path or a string') self.config_meta = ConfigMeta(**config.pop("__metadata__")) # TODO: metadata not found # TODO: version check self.models = dict() for model_key, model_config in config.items(): model_name, base_model, model_type = self.parse_key(model_key) model_class = MODEL_CLASSES[base_model][model_type] # alias for config file model_config["model_format"] = model_config.pop("format") self.models[model_key] = model_class.create_config(**model_config) # check config version number and update on disk/RAM if necessary self.app_config = InvokeAIAppConfig.get_config() self.logger = logger self.cache = ModelCache( max_cache_size=max_cache_size, max_vram_cache_size = self.app_config.max_vram_cache_size, execution_device = device_type, precision = precision, sequential_offload = sequential_offload, logger = logger, ) self.cache_keys = dict() # add controlnet, lora and textual_inversion models from disk self.scan_models_directory() def model_exists( self, model_name: str, base_model: BaseModelType, model_type: ModelType, ) -> bool: """ Given a model name, returns True if it is a valid identifier. """ model_key = self.create_key(model_name, base_model, model_type) return model_key in self.models @classmethod def create_key( cls, model_name: str, base_model: BaseModelType, model_type: ModelType, ) -> str: return f"{base_model}/{model_type}/{model_name}" @classmethod def parse_key(cls, model_key: str) -> Tuple[str, BaseModelType, ModelType]: base_model_str, model_type_str, model_name = model_key.split('/', 2) try: model_type = ModelType(model_type_str) except: raise Exception(f"Unknown model type: {model_type_str}") try: base_model = BaseModelType(base_model_str) except: raise Exception(f"Unknown base model: {base_model_str}") return (model_name, base_model, model_type) def _get_model_cache_path(self, model_path): return self.app_config.models_path / ".cache" / hashlib.md5(str(model_path).encode()).hexdigest() @classmethod def initialize_model_config(cls, config_path: Path): """Create empty config file""" with open(config_path,'w') as yaml_file: yaml_file.write(yaml.dump({'__metadata__': {'version':'3.0.0'} } ) ) def get_model( self, model_name: str, base_model: BaseModelType, model_type: ModelType, submodel_type: Optional[SubModelType] = None )->ModelInfo: """Given a model named identified in models.yaml, return an ModelInfo object describing it. :param model_name: symbolic name of the model in models.yaml :param model_type: ModelType enum indicating the type of model to return :param base_model: BaseModelType enum indicating the base model used by this model :param submode_typel: an ModelType enum indicating the portion of the model to retrieve (e.g. ModelType.Vae) """ model_class = MODEL_CLASSES[base_model][model_type] model_key = self.create_key(model_name, base_model, model_type) # if model not found try to find it (maybe file just pasted) if model_key not in self.models: self.scan_models_directory(base_model=base_model, model_type=model_type) if model_key not in self.models: raise ModelNotFoundException(f"Model not found - {model_key}") model_config = self.models[model_key] model_path = self.app_config.root_path / model_config.path if not model_path.exists(): if model_class.save_to_config: self.models[model_key].error = ModelError.NotFound raise Exception(f"Files for model \"{model_key}\" not found") else: self.models.pop(model_key, None) raise ModelNotFoundException(f"Model not found - {model_key}") # vae/movq override # TODO: if submodel_type is not None and hasattr(model_config, submodel_type): override_path = getattr(model_config, submodel_type) if override_path: model_path = self.app_config.root_path / override_path model_type = submodel_type submodel_type = None model_class = MODEL_CLASSES[base_model][model_type] # TODO: path # TODO: is it accurate to use path as id dst_convert_path = self._get_model_cache_path(model_path) model_path = model_class.convert_if_required( base_model=base_model, model_path=str(model_path), # TODO: refactor str/Path types logic output_path=dst_convert_path, config=model_config, ) model_context = self.cache.get_model( model_path=model_path, model_class=model_class, base_model=base_model, model_type=model_type, submodel=submodel_type, ) if model_key not in self.cache_keys: self.cache_keys[model_key] = set() self.cache_keys[model_key].add(model_context.key) model_hash = "" # TODO: return ModelInfo( context = model_context, name = model_name, base_model = base_model, type = submodel_type or model_type, hash = model_hash, location = model_path, # TODO: precision = self.cache.precision, _cache = self.cache, ) def model_info( self, model_name: str, base_model: BaseModelType, model_type: ModelType, ) -> dict: """ Given a model name returns the OmegaConf (dict-like) object describing it. """ model_key = self.create_key(model_name, base_model, model_type) if model_key in self.models: return self.models[model_key].dict(exclude_defaults=True) else: return None # TODO: None or empty dict on not found def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]: """ Return a list of (str, BaseModelType, ModelType) corresponding to all models known to the configuration. """ return [(self.parse_key(x)) for x in self.models.keys()] def list_model( self, model_name: str, base_model: BaseModelType, model_type: ModelType, ) -> dict: """ Returns a dict describing one installed model, using the combined format of the list_models() method. """ models = self.list_models(base_model,model_type,model_name) return models[0] if models else None def list_models( self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None, model_name: Optional[str] = None, ) -> list[dict]: """ Return a list of models. """ model_keys = [self.create_key(model_name, base_model, model_type)] if model_name else sorted(self.models, key=str.casefold) models = [] for model_key in model_keys: model_config = self.models[model_key] cur_model_name, cur_base_model, cur_model_type = self.parse_key(model_key) if base_model is not None and cur_base_model != base_model: continue if model_type is not None and cur_model_type != model_type: continue model_dict = dict( **model_config.dict(exclude_defaults=True), # OpenAPIModelInfoBase name=cur_model_name, base_model=cur_base_model, type=cur_model_type, ) models.append(model_dict) return models def print_models(self) -> None: """ Print a table of models and their descriptions. This needs to be redone """ # TODO: redo for model_type, model_dict in self.list_models().items(): for model_name, model_info in model_dict.items(): line = f'{model_info["name"]:25s} {model_info["type"]:10s} {model_info["description"]}' print(line) # Tested - LS def del_model( self, model_name: str, base_model: BaseModelType, model_type: ModelType, ): """ Delete the named model. """ model_key = self.create_key(model_name, base_model, model_type) model_cfg = self.models.pop(model_key, None) if model_cfg is None: raise KeyError(f"Unknown model {model_key}") # note: it not garantie to release memory(model can has other references) cache_ids = self.cache_keys.pop(model_key, []) for cache_id in cache_ids: self.cache.uncache_model(cache_id) # if model inside invoke models folder - delete files model_path = self.app_config.root_path / model_cfg.path cache_path = self._get_model_cache_path(model_path) if cache_path.exists(): rmtree(str(cache_path)) if model_path.is_relative_to(self.app_config.models_path): if model_path.is_dir(): rmtree(str(model_path)) else: model_path.unlink() self.commit() # LS: tested def add_model( self, model_name: str, base_model: BaseModelType, model_type: ModelType, model_attributes: dict, clobber: bool = False, ) -> AddModelResult: """ Update the named model with a dictionary of attributes. Will fail with an assertion error if the name already exists. Pass clobber=True to overwrite. On a successful update, the config will be changed in memory and the method will return True. Will fail with an assertion error if provided attributes are incorrect or the model name is missing. The returned dict has the same format as the dict returned by model_info(). """ model_class = MODEL_CLASSES[base_model][model_type] model_config = model_class.create_config(**model_attributes) model_key = self.create_key(model_name, base_model, model_type) if model_key in self.models and not clobber: raise Exception(f'Attempt to overwrite existing model definition "{model_key}"') old_model = self.models.pop(model_key, None) if old_model is not None: # TODO: if path changed and old_model.path inside models folder should we delete this too? # remove conversion cache as config changed old_model_path = self.app_config.root_path / old_model.path old_model_cache = self._get_model_cache_path(old_model_path) if old_model_cache.exists(): if old_model_cache.is_dir(): rmtree(str(old_model_cache)) else: old_model_cache.unlink() # remove in-memory cache # note: it not guaranteed to release memory(model can has other references) cache_ids = self.cache_keys.pop(model_key, []) for cache_id in cache_ids: self.cache.uncache_model(cache_id) self.models[model_key] = model_config self.commit() return AddModelResult( name = model_name, model_type = model_type, base_model = base_model, config = model_config, ) def convert_model ( self, model_name: str, base_model: BaseModelType, model_type: Union[ModelType.Main,ModelType.Vae], ) -> AddModelResult: ''' Convert a checkpoint file into a diffusers folder, deleting the cached version and deleting the original checkpoint file if it is in the models directory. :param model_name: Name of the model to convert :param base_model: Base model type :param model_type: Type of model ['vae' or 'main'] This will raise a ValueError unless the model is a checkpoint. ''' info = self.model_info(model_name, base_model, model_type) if info["model_format"] != "checkpoint": raise ValueError(f"not a checkpoint format model: {model_name}") # We are taking advantage of a side effect of get_model() that converts check points # into cached diffusers directories stored at `location`. It doesn't matter # what submodeltype we request here, so we get the smallest. submodel = {"submodel_type": SubModelType.Tokenizer} if model_type==ModelType.Main else {} model = self.get_model(model_name, base_model, model_type, **submodel, ) checkpoint_path = self.app_config.root_path / info["path"] old_diffusers_path = self.app_config.models_path / model.location new_diffusers_path = self.app_config.models_path / base_model.value / model_type.value / model_name if new_diffusers_path.exists(): raise ValueError(f"A diffusers model already exists at {new_diffusers_path}") try: move(old_diffusers_path,new_diffusers_path) info["model_format"] = "diffusers" info["path"] = str(new_diffusers_path.relative_to(self.app_config.root_path)) info.pop('config') result = self.add_model(model_name, base_model, model_type, model_attributes = info, clobber=True) except: # something went wrong, so don't leave dangling diffusers model in directory or it will cause a duplicate model error! rmtree(new_diffusers_path) raise if checkpoint_path.exists() and checkpoint_path.is_relative_to(self.app_config.models_path): checkpoint_path.unlink() return result def search_models(self, search_folder): self.logger.info(f"Finding Models In: {search_folder}") models_folder_ckpt = Path(search_folder).glob("**/*.ckpt") models_folder_safetensors = Path(search_folder).glob("**/*.safetensors") ckpt_files = [x for x in models_folder_ckpt if x.is_file()] safetensor_files = [x for x in models_folder_safetensors if x.is_file()] files = ckpt_files + safetensor_files found_models = [] for file in files: location = str(file.resolve()).replace("\\", "/") if ( "model.safetensors" not in location and "diffusion_pytorch_model.safetensors" not in location ): found_models.append({"name": file.stem, "location": location}) return search_folder, found_models def commit(self, conf_file: Path=None) -> None: """ Write current configuration out to the indicated file. """ data_to_save = dict() data_to_save["__metadata__"] = self.config_meta.dict() for model_key, model_config in self.models.items(): model_name, base_model, model_type = self.parse_key(model_key) model_class = MODEL_CLASSES[base_model][model_type] if model_class.save_to_config: # TODO: or exclude_unset better fits here? data_to_save[model_key] = model_config.dict(exclude_defaults=True, exclude={"error"}) # alias for config file data_to_save[model_key]["format"] = data_to_save[model_key].pop("model_format") yaml_str = OmegaConf.to_yaml(data_to_save) config_file_path = conf_file or self.config_path assert config_file_path is not None,'no config file path to write to' config_file_path = self.app_config.root_path / config_file_path tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp") with open(tmpfile, "w", encoding="utf-8") as outfile: outfile.write(self.preamble()) outfile.write(yaml_str) os.replace(tmpfile, config_file_path) def preamble(self) -> str: """ Returns the preamble for the config file. """ return textwrap.dedent( """\ # This file describes the alternative machine learning models # available to InvokeAI script. # # To add a new model, follow the examples below. Each # model requires a model config file, a weights file, # and the width and height of the images it # was trained on. """ ) def scan_models_directory( self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None, ): loaded_files = set() new_models_found = False self.logger.info(f'scanning {self.app_config.models_path} for new models') with Chdir(self.app_config.root_path): for model_key, model_config in list(self.models.items()): model_name, cur_base_model, cur_model_type = self.parse_key(model_key) model_path = self.app_config.root_path.absolute() / model_config.path if not model_path.exists(): model_class = MODEL_CLASSES[cur_base_model][cur_model_type] if model_class.save_to_config: model_config.error = ModelError.NotFound self.models.pop(model_key, None) else: self.models.pop(model_key, None) else: loaded_files.add(model_path) for cur_base_model in BaseModelType: if base_model is not None and cur_base_model != base_model: continue for cur_model_type in ModelType: if model_type is not None and cur_model_type != model_type: continue model_class = MODEL_CLASSES[cur_base_model][cur_model_type] models_dir = self.app_config.models_path / cur_base_model.value / cur_model_type.value if not models_dir.exists(): continue # TODO: or create all folders? for model_path in models_dir.iterdir(): if model_path not in loaded_files: # TODO: check model_name = model_path.name if model_path.is_dir() else model_path.stem model_key = self.create_key(model_name, cur_base_model, cur_model_type) if model_key in self.models: raise Exception(f"Model with key {model_key} added twice") if model_path.is_relative_to(self.app_config.root_path): model_path = model_path.relative_to(self.app_config.root_path) try: model_config: ModelConfigBase = model_class.probe_config(str(model_path)) self.models[model_key] = model_config new_models_found = True except InvalidModelException: self.logger.warning(f"Not a valid model: {model_path}") except NotImplementedError as e: self.logger.warning(e) imported_models = self.autoimport() if (new_models_found or imported_models) and self.config_path: self.commit() def autoimport(self)->Dict[str, AddModelResult]: ''' Scan the autoimport directory (if defined) and import new models, delete defunct models. ''' # avoid circular import from invokeai.backend.install.model_install_backend import ModelInstall from invokeai.frontend.install.model_install import ask_user_for_prediction_type installer = ModelInstall(config = self.app_config, model_manager = self, prediction_type_helper = ask_user_for_prediction_type, ) scanned_dirs = set() config = self.app_config known_paths = {(self.app_config.root_path / x['path']) for x in self.list_models()} for autodir in [config.autoimport_dir, config.lora_dir, config.embedding_dir, config.controlnet_dir]: if autodir is None: continue self.logger.info(f'Scanning {autodir} for models to import') installed = dict() autodir = self.app_config.root_path / autodir if not autodir.exists(): continue items_scanned = 0 new_models_found = dict() for root, dirs, files in os.walk(autodir): items_scanned += len(dirs) + len(files) for d in dirs: path = Path(root) / d if path in known_paths or path.parent in scanned_dirs: scanned_dirs.add(path) continue if any([(path/x).exists() for x in {'config.json','model_index.json','learned_embeds.bin','pytorch_lora_weights.bin'}]): try: new_models_found.update(installer.heuristic_import(path)) scanned_dirs.add(path) except ValueError as e: self.logger.warning(str(e)) for f in files: path = Path(root) / f if path in known_paths or path.parent in scanned_dirs: continue if path.suffix in {'.ckpt','.bin','.pth','.safetensors','.pt'}: try: import_result = installer.heuristic_import(path) new_models_found.update(import_result) except ValueError as e: self.logger.warning(str(e)) self.logger.info(f'Scanned {items_scanned} files and directories, imported {len(new_models_found)} models') installed.update(new_models_found) return installed def heuristic_import(self, items_to_import: Set[str], prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None, )->Dict[str, AddModelResult]: '''Import a list of paths, repo_ids or URLs. Returns the set of successfully imported items. :param items_to_import: Set of strings corresponding to models to be imported. :param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType. The prediction type helper is necessary to distinguish between models based on Stable Diffusion 2 Base (requiring SchedulerPredictionType.Epsilson) and Stable Diffusion 768 (requiring SchedulerPredictionType.VPrediction). It is generally impossible to do this programmatically, so the prediction_type_helper usually asks the user to choose. The result is a set of successfully installed models. Each element of the set is a dict corresponding to the newly-created OmegaConf stanza for that model. May return the following exceptions: - KeyError - one or more of the items to import is not a valid path, repo_id or URL - ValueError - a corresponding model already exists ''' # avoid circular import here from invokeai.backend.install.model_install_backend import ModelInstall successfully_installed = dict() installer = ModelInstall(config = self.app_config, prediction_type_helper = prediction_type_helper, model_manager = self) for thing in items_to_import: installed = installer.heuristic_import(thing) successfully_installed.update(installed) self.commit() return successfully_installed