# InvokeAI nodes for ControlNet image preprocessors # initial implementation by Gregg Helt, 2023 # heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux import numpy as np from typing import Literal, Optional, Union, List from PIL import Image, ImageFilter, ImageOps from pydantic import BaseModel, Field from ..models.image import ImageField, ImageCategory, ResourceOrigin from .baseinvocation import ( BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig, ) from controlnet_aux import ( CannyDetector, HEDdetector, LineartDetector, LineartAnimeDetector, MidasDetector, MLSDdetector, NormalBaeDetector, OpenposeDetector, PidiNetDetector, ContentShuffleDetector, ZoeDetector, MediapipeFaceDetector, ) from .image import ImageOutput, PILInvocationConfig CONTROLNET_DEFAULT_MODELS = [ ########################################### # lllyasviel sd v1.5, ControlNet v1.0 models ############################################## "lllyasviel/sd-controlnet-canny", "lllyasviel/sd-controlnet-depth", "lllyasviel/sd-controlnet-hed", "lllyasviel/sd-controlnet-seg", "lllyasviel/sd-controlnet-openpose", "lllyasviel/sd-controlnet-scribble", "lllyasviel/sd-controlnet-normal", "lllyasviel/sd-controlnet-mlsd", ############################################# # lllyasviel sd v1.5, ControlNet v1.1 models ############################################# "lllyasviel/control_v11p_sd15_canny", "lllyasviel/control_v11p_sd15_openpose", "lllyasviel/control_v11p_sd15_seg", # "lllyasviel/control_v11p_sd15_depth", # broken "lllyasviel/control_v11f1p_sd15_depth", "lllyasviel/control_v11p_sd15_normalbae", "lllyasviel/control_v11p_sd15_scribble", "lllyasviel/control_v11p_sd15_mlsd", "lllyasviel/control_v11p_sd15_softedge", "lllyasviel/control_v11p_sd15s2_lineart_anime", "lllyasviel/control_v11p_sd15_lineart", "lllyasviel/control_v11p_sd15_inpaint", # "lllyasviel/control_v11u_sd15_tile", # problem (temporary?) with huffingface "lllyasviel/control_v11u_sd15_tile", # so for now replace "lllyasviel/control_v11f1e_sd15_tile", "lllyasviel/control_v11e_sd15_shuffle", "lllyasviel/control_v11e_sd15_ip2p", "lllyasviel/control_v11f1e_sd15_tile", ################################################# # thibaud sd v2.1 models (ControlNet v1.0? or v1.1? ################################################## "thibaud/controlnet-sd21-openpose-diffusers", "thibaud/controlnet-sd21-canny-diffusers", "thibaud/controlnet-sd21-depth-diffusers", "thibaud/controlnet-sd21-scribble-diffusers", "thibaud/controlnet-sd21-hed-diffusers", "thibaud/controlnet-sd21-zoedepth-diffusers", "thibaud/controlnet-sd21-color-diffusers", "thibaud/controlnet-sd21-openposev2-diffusers", "thibaud/controlnet-sd21-lineart-diffusers", "thibaud/controlnet-sd21-normalbae-diffusers", "thibaud/controlnet-sd21-ade20k-diffusers", ############################################## # ControlNetMediaPipeface, ControlNet v1.1 ############################################## # ["CrucibleAI/ControlNetMediaPipeFace", "diffusion_sd15"], # SD 1.5 # diffusion_sd15 needs to be passed to from_pretrained() as subfolder arg # hacked t2l to split to model & subfolder if format is "model,subfolder" "CrucibleAI/ControlNetMediaPipeFace,diffusion_sd15", # SD 1.5 "CrucibleAI/ControlNetMediaPipeFace", # SD 2.1? ] CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)] class ControlField(BaseModel): image: ImageField = Field(default=None, description="The control image") control_model: Optional[str] = Field(default=None, description="The ControlNet model to use") control_weight: Optional[float] = Field(default=1, description="The weight given to the ControlNet") begin_step_percent: float = Field(default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)") end_step_percent: float = Field(default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)") class Config: schema_extra = { "required": ["image", "control_model", "control_weight", "begin_step_percent", "end_step_percent"] } class ControlOutput(BaseInvocationOutput): """node output for ControlNet info""" # fmt: off type: Literal["control_output"] = "control_output" control: ControlField = Field(default=None, description="The output control image") # fmt: on class ControlNetInvocation(BaseInvocation): """Collects ControlNet info to pass to other nodes""" # fmt: off type: Literal["controlnet"] = "controlnet" # Inputs image: ImageField = Field(default=None, description="The control image") control_model: CONTROLNET_NAME_VALUES = Field(default="lllyasviel/sd-controlnet-canny", description="The ControlNet model to use") control_weight: float = Field(default=1.0, ge=0, le=1, description="The weight given to the ControlNet") # TODO: add support in backend core for begin_step_percent, end_step_percent, guess_mode begin_step_percent: float = Field(default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)") end_step_percent: float = Field(default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)") # fmt: on def invoke(self, context: InvocationContext) -> ControlOutput: return ControlOutput( control=ControlField( image=self.image, control_model=self.control_model, control_weight=self.control_weight, begin_step_percent=self.begin_step_percent, end_step_percent=self.end_step_percent, ), ) # TODO: move image processors to separate file (image_analysis.py class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig): """Base class for invocations that preprocess images for ControlNet""" # fmt: off type: Literal["image_processor"] = "image_processor" # Inputs image: ImageField = Field(default=None, description="The image to process") # fmt: on def run_processor(self, image): # superclass just passes through image without processing return image def invoke(self, context: InvocationContext) -> ImageOutput: raw_image = context.services.images.get_pil_image( self.image.image_origin, self.image.image_name ) # image type should be PIL.PngImagePlugin.PngImageFile ? processed_image = self.run_processor(raw_image) # FIXME: what happened to image metadata? # metadata = context.services.metadata.build_metadata( # session_id=context.graph_execution_state_id, node=self # ) # currently can't see processed image in node UI without a showImage node, # so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery image_dto = context.services.images.create( image=processed_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.CONTROL, session_id=context.graph_execution_state_id, node_id=self.id, is_intermediate=self.is_intermediate ) """Builds an ImageOutput and its ImageField""" processed_image_field = ImageField( image_name=image_dto.image_name, image_origin=image_dto.image_origin, ) return ImageOutput( image=processed_image_field, # width=processed_image.width, width = image_dto.width, # height=processed_image.height, height = image_dto.height, # mode=processed_image.mode, ) class CannyImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Canny edge detection for ControlNet""" # fmt: off type: Literal["canny_image_processor"] = "canny_image_processor" # Input low_threshold: int = Field(default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)") high_threshold: int = Field(default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)") # fmt: on def run_processor(self, image): canny_processor = CannyDetector() processed_image = canny_processor(image, self.low_threshold, self.high_threshold) return processed_image class HedImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies HED edge detection to image""" # fmt: off type: Literal["hed_image_processor"] = "hed_image_processor" # Inputs detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection") image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image") # safe not supported in controlnet_aux v0.0.3 # safe: bool = Field(default=False, description="whether to use safe mode") scribble: bool = Field(default=False, description="Whether to use scribble mode") # fmt: on def run_processor(self, image): hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators") processed_image = hed_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, # safe not supported in controlnet_aux v0.0.3 # safe=self.safe, scribble=self.scribble, ) return processed_image class LineartImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies line art processing to image""" # fmt: off type: Literal["lineart_image_processor"] = "lineart_image_processor" # Inputs detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection") image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image") coarse: bool = Field(default=False, description="Whether to use coarse mode") # fmt: on def run_processor(self, image): lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators") processed_image = lineart_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, coarse=self.coarse) return processed_image class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies line art anime processing to image""" # fmt: off type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor" # Inputs detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection") image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image") # fmt: on def run_processor(self, image): processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators") processed_image = processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, ) return processed_image class OpenposeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies Openpose processing to image""" # fmt: off type: Literal["openpose_image_processor"] = "openpose_image_processor" # Inputs hand_and_face: bool = Field(default=False, description="Whether to use hands and face mode") detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection") image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image") # fmt: on def run_processor(self, image): openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators") processed_image = openpose_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, hand_and_face=self.hand_and_face, ) return processed_image class MidasDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies Midas depth processing to image""" # fmt: off type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor" # Inputs a_mult: float = Field(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)") bg_th: float = Field(default=0.1, ge=0, description="Midas parameter `bg_th`") # depth_and_normal not supported in controlnet_aux v0.0.3 # depth_and_normal: bool = Field(default=False, description="whether to use depth and normal mode") # fmt: on def run_processor(self, image): midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators") processed_image = midas_processor(image, a=np.pi * self.a_mult, bg_th=self.bg_th, # dept_and_normal not supported in controlnet_aux v0.0.3 # depth_and_normal=self.depth_and_normal, ) return processed_image class NormalbaeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies NormalBae processing to image""" # fmt: off type: Literal["normalbae_image_processor"] = "normalbae_image_processor" # Inputs detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection") image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image") # fmt: on def run_processor(self, image): normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators") processed_image = normalbae_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution) return processed_image class MlsdImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies MLSD processing to image""" # fmt: off type: Literal["mlsd_image_processor"] = "mlsd_image_processor" # Inputs detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection") image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image") thr_v: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_v`") thr_d: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_d`") # fmt: on def run_processor(self, image): mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators") processed_image = mlsd_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, thr_v=self.thr_v, thr_d=self.thr_d) return processed_image class PidiImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies PIDI processing to image""" # fmt: off type: Literal["pidi_image_processor"] = "pidi_image_processor" # Inputs detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection") image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image") safe: bool = Field(default=False, description="Whether to use safe mode") scribble: bool = Field(default=False, description="Whether to use scribble mode") # fmt: on def run_processor(self, image): pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators") processed_image = pidi_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, safe=self.safe, scribble=self.scribble) return processed_image class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies content shuffle processing to image""" # fmt: off type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor" # Inputs detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection") image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image") h: Union[int, None] = Field(default=512, ge=0, description="Content shuffle `h` parameter") w: Union[int, None] = Field(default=512, ge=0, description="Content shuffle `w` parameter") f: Union[int, None] = Field(default=256, ge=0, description="Content shuffle `f` parameter") # fmt: on def run_processor(self, image): content_shuffle_processor = ContentShuffleDetector() processed_image = content_shuffle_processor(image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, h=self.h, w=self.w, f=self.f ) return processed_image # should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13 class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies Zoe depth processing to image""" # fmt: off type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor" # fmt: on def run_processor(self, image): zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators") processed_image = zoe_depth_processor(image) return processed_image class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig): """Applies mediapipe face processing to image""" # fmt: off type: Literal["mediapipe_face_processor"] = "mediapipe_face_processor" # Inputs max_faces: int = Field(default=1, ge=1, description="Maximum number of faces to detect") min_confidence: float = Field(default=0.5, ge=0, le=1, description="Minimum confidence for face detection") # fmt: on def run_processor(self, image): mediapipe_face_processor = MediapipeFaceDetector() processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence) return processed_image