# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team """Invokeai configuration system. Arguments and fields are taken from the pydantic definition of the model. Defaults can be set by creating a yaml configuration file that has a top-level key of "InvokeAI" and subheadings for each of the categories returned by `invokeai --help`. The file looks like this: [file: invokeai.yaml] InvokeAI: Web Server: host: 127.0.0.1 port: 9090 allow_origins: [] allow_credentials: true allow_methods: - '*' allow_headers: - '*' Features: esrgan: true internet_available: true log_tokenization: false patchmatch: true ignore_missing_core_models: false Paths: autoimport_dir: autoimport lora_dir: null embedding_dir: null controlnet_dir: null models_dir: models legacy_conf_dir: configs/stable-diffusion db_dir: databases outdir: /home/lstein/invokeai-main/outputs use_memory_db: false Logging: log_handlers: - console log_format: plain log_level: info Model Cache: ram: 13.5 vram: 0.25 lazy_offload: true log_memory_usage: false Device: device: auto precision: auto Generation: sequential_guidance: false attention_type: xformers attention_slice_size: auto force_tiled_decode: false The default name of the configuration file is `invokeai.yaml`, located in INVOKEAI_ROOT. You can replace supersede this by providing any OmegaConf dictionary object initialization time: omegaconf = OmegaConf.load('/tmp/init.yaml') conf = InvokeAIAppConfig() conf.parse_args(conf=omegaconf) InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv` at initialization time. You may pass a list of strings in the optional `argv` argument to use instead of the system argv: conf.parse_args(argv=['--log_tokenization']) It is also possible to set a value at initialization time. However, if you call parse_args() it may be overwritten. conf = InvokeAIAppConfig(log_tokenization=True) conf.parse_args(argv=['--no-log_tokenization']) conf.log_tokenization # False To avoid this, use `get_config()` to retrieve the application-wide configuration object. This will retain any properties set at object creation time: conf = InvokeAIAppConfig.get_config(log_tokenization=True) conf.parse_args(argv=['--no-log_tokenization']) conf.log_tokenization # True Any setting can be overwritten by setting an environment variable of form: "INVOKEAI_", as in: export INVOKEAI_port=8080 Order of precedence (from highest): 1) initialization options 2) command line options 3) environment variable options 4) config file options 5) pydantic defaults Typical usage at the top level file: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size conf = InvokeAIAppConfig.get_config() conf.parse_args() print(conf.ram_cache_size) Typical usage in a backend module: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size value conf = InvokeAIAppConfig.get_config() print(conf.ram_cache_size) Computed properties: The InvokeAIAppConfig object has a series of properties that resolve paths relative to the runtime root directory. They each return a Path object: root_path - path to InvokeAI root output_path - path to default outputs directory conf - alias for the above embedding_path - path to the embeddings directory lora_path - path to the LoRA directory In most cases, you will want to create a single InvokeAIAppConfig object for the entire application. The InvokeAIAppConfig.get_config() function does this: config = InvokeAIAppConfig.get_config() config.parse_args() # read values from the command line/config file print(config.root) # Subclassing If you wish to create a similar class, please subclass the `InvokeAISettings` class and define a Literal field named "type", which is set to the desired top-level name. For example, to create a "InvokeBatch" configuration, define like this: class InvokeBatch(InvokeAISettings): type: Literal["InvokeBatch"] = "InvokeBatch" node_count : int = Field(default=1, description="Number of nodes to run on", json_schema_extra=dict(category='Resources')) cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", json_schema_extra=dict(category='Resources')) This will now read and write from the "InvokeBatch" section of the config file, look for environment variables named INVOKEBATCH_*, and accept the command-line arguments `--node_count` and `--cpu_count`. The two configs are kept in separate sections of the config file: # invokeai.yaml InvokeBatch: Resources: node_count: 1 cpu_count: 8 InvokeAI: Paths: root: /home/lstein/invokeai-main legacy_conf_dir: configs/stable-diffusion outdir: outputs ... """ from __future__ import annotations import os from pathlib import Path from typing import Any, ClassVar, Dict, List, Literal, Optional from omegaconf import DictConfig, OmegaConf from pydantic import Field from pydantic.config import JsonDict from pydantic_settings import SettingsConfigDict from .config_base import InvokeAISettings INIT_FILE = Path("invokeai.yaml") DB_FILE = Path("invokeai.db") LEGACY_INIT_FILE = Path("invokeai.init") DEFAULT_RAM_CACHE = 10.0 DEFAULT_VRAM_CACHE = 0.25 DEFAULT_CONVERT_CACHE = 20.0 class Categories(object): """Category headers for configuration variable groups.""" WebServer: JsonDict = {"category": "Web Server"} Features: JsonDict = {"category": "Features"} Paths: JsonDict = {"category": "Paths"} Logging: JsonDict = {"category": "Logging"} Development: JsonDict = {"category": "Development"} Other: JsonDict = {"category": "Other"} ModelCache: JsonDict = {"category": "Model Cache"} Device: JsonDict = {"category": "Device"} Generation: JsonDict = {"category": "Generation"} Queue: JsonDict = {"category": "Queue"} Nodes: JsonDict = {"category": "Nodes"} MemoryPerformance: JsonDict = {"category": "Memory/Performance"} class InvokeAIAppConfig(InvokeAISettings): """Configuration object for InvokeAI App.""" singleton_config: ClassVar[Optional[InvokeAIAppConfig]] = None singleton_init: ClassVar[Optional[Dict[str, Any]]] = None # fmt: off type: Literal["InvokeAI"] = "InvokeAI" # WEB host : str = Field(default="127.0.0.1", description="IP address to bind to", json_schema_extra=Categories.WebServer) port : int = Field(default=9090, description="Port to bind to", json_schema_extra=Categories.WebServer) allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", json_schema_extra=Categories.WebServer) allow_credentials : bool = Field(default=True, description="Allow CORS credentials", json_schema_extra=Categories.WebServer) allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", json_schema_extra=Categories.WebServer) allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", json_schema_extra=Categories.WebServer) # SSL options correspond to https://www.uvicorn.org/settings/#https ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file (for HTTPS)", json_schema_extra=Categories.WebServer) ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file", json_schema_extra=Categories.WebServer) # FEATURES esrgan : bool = Field(default=True, description="Enable/disable upscaling code", json_schema_extra=Categories.Features) internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", json_schema_extra=Categories.Features) log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", json_schema_extra=Categories.Features) patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", json_schema_extra=Categories.Features) ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', json_schema_extra=Categories.Features) # PATHS root : Optional[Path] = Field(default=None, description='InvokeAI runtime root directory', json_schema_extra=Categories.Paths) autoimport_dir : Path = Field(default=Path('autoimport'), description='Path to a directory of models files to be imported on startup.', json_schema_extra=Categories.Paths) models_dir : Path = Field(default=Path('models'), description='Path to the models directory', json_schema_extra=Categories.Paths) convert_cache_dir : Path = Field(default=Path('models/.cache'), description='Path to the converted models cache directory', json_schema_extra=Categories.Paths) legacy_conf_dir : Path = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files', json_schema_extra=Categories.Paths) db_dir : Path = Field(default=Path('databases'), description='Path to InvokeAI databases directory', json_schema_extra=Categories.Paths) outdir : Path = Field(default=Path('outputs'), description='Default folder for output images', json_schema_extra=Categories.Paths) use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', json_schema_extra=Categories.Paths) custom_nodes_dir : Path = Field(default=Path('nodes'), description='Path to directory for custom nodes', json_schema_extra=Categories.Paths) from_file : Optional[Path] = Field(default=None, description='Take command input from the indicated file (command-line client only)', json_schema_extra=Categories.Paths) # LOGGING log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=", "syslog=path|address:host:port", "http="', json_schema_extra=Categories.Logging) # note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', json_schema_extra=Categories.Logging) log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", json_schema_extra=Categories.Logging) log_sql : bool = Field(default=False, description="Log SQL queries", json_schema_extra=Categories.Logging) # Development dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", json_schema_extra=Categories.Development) profile_graphs : bool = Field(default=False, description="Enable graph profiling", json_schema_extra=Categories.Development) profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development) profiles_dir : Path = Field(default=Path('profiles'), description="Directory for graph profiles", json_schema_extra=Categories.Development) skip_model_hash : bool = Field(default=False, description="Skip model hashing, instead assigning a UUID to models. Useful when using a memory db to reduce startup time.", json_schema_extra=Categories.Development) version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other) # CACHE ram : float = Field(default=DEFAULT_RAM_CACHE, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number, GB)", json_schema_extra=Categories.ModelCache, ) vram : float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (floating point number, GB)", json_schema_extra=Categories.ModelCache, ) convert_cache : float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB)", json_schema_extra=Categories.ModelCache) lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", json_schema_extra=Categories.ModelCache, ) log_memory_usage : bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.", json_schema_extra=Categories.ModelCache) # DEVICE device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", json_schema_extra=Categories.Device) precision : Literal["auto", "float16", "bfloat16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", json_schema_extra=Categories.Device) # GENERATION sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", json_schema_extra=Categories.Generation) attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", json_schema_extra=Categories.Generation) attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', json_schema_extra=Categories.Generation) force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Generation) png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation) # QUEUE max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", json_schema_extra=Categories.Queue) # NODES allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", json_schema_extra=Categories.Nodes) deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes) node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes) # MODEL IMPORT remote_repo_api_key : Optional[str] = Field(default=os.environ.get("INVOKEAI_REMOTE_REPO_API_KEY"), description="API key used when downloading remote repositories", json_schema_extra=Categories.Other) # DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance) max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.MemoryPerformance) max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", json_schema_extra=Categories.MemoryPerformance) xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", json_schema_extra=Categories.MemoryPerformance) tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.MemoryPerformance) lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths) embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths) controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths) conf_path : Path = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Paths) # this is not referred to in the source code and can be removed entirely #free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance) # See InvokeAIAppConfig subclass below for CACHE and DEVICE categories # fmt: on model_config = SettingsConfigDict(validate_assignment=True, env_prefix="INVOKEAI") def parse_args( self, argv: Optional[list[str]] = None, conf: Optional[DictConfig] = None, clobber: Optional[bool] = False, ) -> None: """ Update settings with contents of init file, environment, and command-line settings. :param conf: alternate Omegaconf dictionary object :param argv: aternate sys.argv list :param clobber: ovewrite any initialization parameters passed during initialization """ # Set the runtime root directory. We parse command-line switches here # in order to pick up the --root_dir option. super().parse_args(argv) loaded_conf = None if conf is None: try: loaded_conf = OmegaConf.load(self.root_dir / INIT_FILE) except Exception: pass if isinstance(loaded_conf, DictConfig): InvokeAISettings.initconf = loaded_conf else: InvokeAISettings.initconf = conf # parse args again in order to pick up settings in configuration file super().parse_args(argv) if self.singleton_init and not clobber: # When setting values in this way, set validate_assignment to true if you want to validate the value. for k, v in self.singleton_init.items(): setattr(self, k, v) @classmethod def get_config(cls, **kwargs: Any) -> InvokeAIAppConfig: """Return a singleton InvokeAIAppConfig configuration object.""" if ( cls.singleton_config is None or type(cls.singleton_config) is not cls or (kwargs and cls.singleton_init != kwargs) ): cls.singleton_config = cls(**kwargs) cls.singleton_init = kwargs return cls.singleton_config @property def root_path(self) -> Path: """Path to the runtime root directory.""" if self.root: root = Path(self.root).expanduser().absolute() else: root = self.find_root().expanduser().absolute() self.root = root # insulate ourselves from relative paths that may change return root.resolve() @property def root_dir(self) -> Path: """Alias for above.""" return self.root_path def _resolve(self, partial_path: Path) -> Path: return (self.root_path / partial_path).resolve() @property def init_file_path(self) -> Path: """Path to invokeai.yaml.""" resolved_path = self._resolve(INIT_FILE) assert resolved_path is not None return resolved_path @property def output_path(self) -> Optional[Path]: """Path to defaults outputs directory.""" return self._resolve(self.outdir) @property def db_path(self) -> Path: """Path to the invokeai.db file.""" db_dir = self._resolve(self.db_dir) assert db_dir is not None return db_dir / DB_FILE @property def model_conf_path(self) -> Path: """Path to models configuration file.""" return self._resolve(self.conf_path) @property def legacy_conf_path(self) -> Path: """Path to directory of legacy configuration files (e.g. v1-inference.yaml).""" return self._resolve(self.legacy_conf_dir) @property def models_path(self) -> Path: """Path to the models directory.""" return self._resolve(self.models_dir) @property def models_convert_cache_path(self) -> Path: """Path to the converted cache models directory.""" return self._resolve(self.convert_cache_dir) @property def custom_nodes_path(self) -> Path: """Path to the custom nodes directory.""" custom_nodes_path = self._resolve(self.custom_nodes_dir) assert custom_nodes_path is not None return custom_nodes_path # the following methods support legacy calls leftover from the Globals era @property def full_precision(self) -> bool: """Return true if precision set to float32.""" return self.precision == "float32" @property def try_patchmatch(self) -> bool: """Return true if patchmatch true.""" return self.patchmatch @property def nsfw_checker(self) -> bool: """Return value for NSFW checker. The NSFW node is always active and disabled from Web UI.""" return True @property def invisible_watermark(self) -> bool: """Return value of invisible watermark. It is always active and disabled from Web UI.""" return True @property def ram_cache_size(self) -> float: """Return the ram cache size using the legacy or modern setting (GB).""" return self.max_cache_size or self.ram @property def vram_cache_size(self) -> float: """Return the vram cache size using the legacy or modern setting (GB).""" return self.max_vram_cache_size or self.vram @property def convert_cache_size(self) -> float: """Return the convert cache size on disk (GB).""" return self.convert_cache @property def use_cpu(self) -> bool: """Return true if the device is set to CPU or the always_use_cpu flag is set.""" return self.always_use_cpu or self.device == "cpu" @property def disable_xformers(self) -> bool: """Return true if enable_xformers is false (reversed logic) and attention type is not set to xformers.""" disabled_in_config = not self.xformers_enabled return disabled_in_config and self.attention_type != "xformers" @property def profiles_path(self) -> Path: """Path to the graph profiles directory.""" return self._resolve(self.profiles_dir) @staticmethod def find_root() -> Path: """Choose the runtime root directory when not specified on command line or init file.""" return _find_root() def get_invokeai_config(**kwargs: Any) -> InvokeAIAppConfig: """Legacy function which returns InvokeAIAppConfig.get_config().""" return InvokeAIAppConfig.get_config(**kwargs) def _find_root() -> Path: venv = Path(os.environ.get("VIRTUAL_ENV") or ".") if os.environ.get("INVOKEAI_ROOT"): root = Path(os.environ["INVOKEAI_ROOT"]) elif any((venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]): root = (venv.parent).resolve() else: root = Path("~/invokeai").expanduser().resolve() return root