from typing import Literal, Optional, Union, List, Annotated from pydantic import BaseModel, Field import re from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig from .model import ClipField from ...backend.util.devices import torch_dtype from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent from ...backend.model_management import BaseModelType, ModelType, SubModelType, ModelPatcher import torch from compel import Compel, ReturnedEmbeddingsType from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment from ...backend.util.devices import torch_dtype from ...backend.model_management import ModelType from ...backend.model_management.models import ModelNotFoundException from ...backend.model_management.lora import ModelPatcher from ...backend.stable_diffusion import InvokeAIDiffuserComponent, BasicConditioningInfo, SDXLConditioningInfo from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext from .model import ClipField from dataclasses import dataclass class ConditioningField(BaseModel): conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data") class Config: schema_extra = {"required": ["conditioning_name"]} @dataclass class ConditioningFieldData: conditionings: List[BasicConditioningInfo] # unconditioned: Optional[torch.Tensor] # class ConditioningAlgo(str, Enum): # Compose = "compose" # ComposeEx = "compose_ex" # PerpNeg = "perp_neg" class CompelOutput(BaseInvocationOutput): """Compel parser output""" # fmt: off type: Literal["compel_output"] = "compel_output" conditioning: ConditioningField = Field(default=None, description="Conditioning") # fmt: on class CompelInvocation(BaseInvocation): """Parse prompt using compel package to conditioning.""" type: Literal["compel"] = "compel" prompt: str = Field(default="", description="Prompt") clip: ClipField = Field(None, description="Clip to use") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": {"title": "Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}}, } @torch.no_grad() def invoke(self, context: InvocationContext) -> CompelOutput: tokenizer_info = context.services.model_manager.get_model( **self.clip.tokenizer.dict(), context=context, ) text_encoder_info = context.services.model_manager.get_model( **self.clip.text_encoder.dict(), context=context, ) def _lora_loader(): for lora in self.clip.loras: lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context) yield (lora_info.context.model, lora.weight) del lora_info return # loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] ti_list = [] for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt): name = trigger[1:-1] try: ti_list.append( ( name, context.services.model_manager.get_model( model_name=name, base_model=self.clip.text_encoder.base_model, model_type=ModelType.TextualInversion, context=context, ).context.model, ) ) except ModelNotFoundException: # print(e) # import traceback # print(traceback.format_exc()) print(f'Warn: trigger: "{trigger}" not found') with ModelPatcher.apply_lora_text_encoder( text_encoder_info.context.model, _lora_loader() ), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as ( tokenizer, ti_manager, ), ModelPatcher.apply_clip_skip( text_encoder_info.context.model, self.clip.skipped_layers ), text_encoder_info as text_encoder: compel = Compel( tokenizer=tokenizer, text_encoder=text_encoder, textual_inversion_manager=ti_manager, dtype_for_device_getter=torch_dtype, truncate_long_prompts=True, ) conjunction = Compel.parse_prompt_string(self.prompt) prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0] if context.services.configuration.log_tokenization: log_tokenization_for_prompt_object(prompt, tokenizer) c, options = compel.build_conditioning_tensor_for_prompt_object(prompt) ec = InvokeAIDiffuserComponent.ExtraConditioningInfo( tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction), cross_attention_control_args=options.get("cross_attention_control", None), ) c = c.detach().to("cpu") conditioning_data = ConditioningFieldData( conditionings=[ BasicConditioningInfo( embeds=c, extra_conditioning=ec, ) ] ) conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning" context.services.latents.save(conditioning_name, conditioning_data) return CompelOutput( conditioning=ConditioningField( conditioning_name=conditioning_name, ), ) class SDXLPromptInvocationBase: def run_clip_compel( self, context: InvocationContext, clip_field: ClipField, prompt: str, get_pooled: bool, lora_prefix: str, zero_on_empty: bool, ): tokenizer_info = context.services.model_manager.get_model( **clip_field.tokenizer.dict(), context=context, ) text_encoder_info = context.services.model_manager.get_model( **clip_field.text_encoder.dict(), context=context, ) # return zero on empty if prompt == "" and zero_on_empty: cpu_text_encoder = text_encoder_info.context.model c = torch.zeros( (1, cpu_text_encoder.config.max_position_embeddings, cpu_text_encoder.config.hidden_size), dtype=text_encoder_info.context.cache.precision, ) if get_pooled: c_pooled = torch.zeros( (1, cpu_text_encoder.config.hidden_size), dtype=c.dtype, ) else: c_pooled = None return c, c_pooled, None def _lora_loader(): for lora in clip_field.loras: lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context) yield (lora_info.context.model, lora.weight) del lora_info return # loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] ti_list = [] for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt): name = trigger[1:-1] try: ti_list.append( ( name, context.services.model_manager.get_model( model_name=name, base_model=clip_field.text_encoder.base_model, model_type=ModelType.TextualInversion, context=context, ).context.model, ) ) except ModelNotFoundException: # print(e) # import traceback # print(traceback.format_exc()) print(f'Warn: trigger: "{trigger}" not found') with ModelPatcher.apply_lora( text_encoder_info.context.model, _lora_loader(), lora_prefix ), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as ( tokenizer, ti_manager, ), ModelPatcher.apply_clip_skip( text_encoder_info.context.model, clip_field.skipped_layers ), text_encoder_info as text_encoder: compel = Compel( tokenizer=tokenizer, text_encoder=text_encoder, textual_inversion_manager=ti_manager, dtype_for_device_getter=torch_dtype, truncate_long_prompts=True, # TODO: returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip requires_pooled=True, ) conjunction = Compel.parse_prompt_string(prompt) if context.services.configuration.log_tokenization: # TODO: better logging for and syntax for prompt_obj in conjunction.prompts: log_tokenization_for_prompt_object(prompt_obj, tokenizer) # TODO: ask for optimizations? to not run text_encoder twice c, options = compel.build_conditioning_tensor_for_conjunction(conjunction) if get_pooled: c_pooled = compel.conditioning_provider.get_pooled_embeddings([prompt]) else: c_pooled = None ec = InvokeAIDiffuserComponent.ExtraConditioningInfo( tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction), cross_attention_control_args=options.get("cross_attention_control", None), ) del tokenizer del text_encoder del tokenizer_info del text_encoder_info c = c.detach().to("cpu") if c_pooled is not None: c_pooled = c_pooled.detach().to("cpu") return c, c_pooled, ec class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): """Parse prompt using compel package to conditioning.""" type: Literal["sdxl_compel_prompt"] = "sdxl_compel_prompt" prompt: str = Field(default="", description="Prompt") style: str = Field(default="", description="Style prompt") original_width: int = Field(1024, description="") original_height: int = Field(1024, description="") crop_top: int = Field(0, description="") crop_left: int = Field(0, description="") target_width: int = Field(1024, description="") target_height: int = Field(1024, description="") clip: ClipField = Field(None, description="Clip to use") clip2: ClipField = Field(None, description="Clip2 to use") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": {"title": "SDXL Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}}, } @torch.no_grad() def invoke(self, context: InvocationContext) -> CompelOutput: c1, c1_pooled, ec1 = self.run_clip_compel( context, self.clip, self.prompt, False, "lora_te1_", zero_on_empty=False ) if self.style.strip() == "": c2, c2_pooled, ec2 = self.run_clip_compel( context, self.clip2, self.prompt, True, "lora_te2_", zero_on_empty=True ) else: c2, c2_pooled, ec2 = self.run_clip_compel( context, self.clip2, self.style, True, "lora_te2_", zero_on_empty=True ) original_size = (self.original_height, self.original_width) crop_coords = (self.crop_top, self.crop_left) target_size = (self.target_height, self.target_width) add_time_ids = torch.tensor([original_size + crop_coords + target_size]) conditioning_data = ConditioningFieldData( conditionings=[ SDXLConditioningInfo( embeds=torch.cat([c1, c2], dim=-1), pooled_embeds=c2_pooled, add_time_ids=add_time_ids, extra_conditioning=ec1, ) ] ) conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning" context.services.latents.save(conditioning_name, conditioning_data) return CompelOutput( conditioning=ConditioningField( conditioning_name=conditioning_name, ), ) class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): """Parse prompt using compel package to conditioning.""" type: Literal["sdxl_refiner_compel_prompt"] = "sdxl_refiner_compel_prompt" style: str = Field(default="", description="Style prompt") # TODO: ? original_width: int = Field(1024, description="") original_height: int = Field(1024, description="") crop_top: int = Field(0, description="") crop_left: int = Field(0, description="") aesthetic_score: float = Field(6.0, description="") clip2: ClipField = Field(None, description="Clip to use") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "title": "SDXL Refiner Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}, }, } @torch.no_grad() def invoke(self, context: InvocationContext) -> CompelOutput: # TODO: if there will appear lora for refiner - write proper prefix c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True, "", zero_on_empty=False) original_size = (self.original_height, self.original_width) crop_coords = (self.crop_top, self.crop_left) add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)]) conditioning_data = ConditioningFieldData( conditionings=[ SDXLConditioningInfo( embeds=c2, pooled_embeds=c2_pooled, add_time_ids=add_time_ids, extra_conditioning=ec2, # or None ) ] ) conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning" context.services.latents.save(conditioning_name, conditioning_data) return CompelOutput( conditioning=ConditioningField( conditioning_name=conditioning_name, ), ) class ClipSkipInvocationOutput(BaseInvocationOutput): """Clip skip node output""" type: Literal["clip_skip_output"] = "clip_skip_output" clip: ClipField = Field(None, description="Clip with skipped layers") class ClipSkipInvocation(BaseInvocation): """Skip layers in clip text_encoder model.""" type: Literal["clip_skip"] = "clip_skip" clip: ClipField = Field(None, description="Clip to use") skipped_layers: int = Field(0, description="Number of layers to skip in text_encoder") class Config(InvocationConfig): schema_extra = { "ui": {"title": "CLIP Skip", "tags": ["clip", "skip"]}, } def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput: self.clip.skipped_layers += self.skipped_layers return ClipSkipInvocationOutput( clip=self.clip, ) def get_max_token_count( tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False ) -> int: if type(prompt) is Blend: blend: Blend = prompt return max([get_max_token_count(tokenizer, p, truncate_if_too_long) for p in blend.prompts]) elif type(prompt) is Conjunction: conjunction: Conjunction = prompt return sum([get_max_token_count(tokenizer, p, truncate_if_too_long) for p in conjunction.prompts]) else: return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)) def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> List[str]: if type(parsed_prompt) is Blend: raise ValueError("Blend is not supported here - you need to get tokens for each of its .children") text_fragments = [ x.text if type(x) is Fragment else (" ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else str(x)) for x in parsed_prompt.children ] text = " ".join(text_fragments) tokens = tokenizer.tokenize(text) if truncate_if_too_long: max_tokens_length = tokenizer.model_max_length - 2 # typically 75 tokens = tokens[0:max_tokens_length] return tokens def log_tokenization_for_conjunction(c: Conjunction, tokenizer, display_label_prefix=None): display_label_prefix = display_label_prefix or "" for i, p in enumerate(c.prompts): if len(c.prompts) > 1: this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})" else: this_display_label_prefix = display_label_prefix log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix) def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None): display_label_prefix = display_label_prefix or "" if type(p) is Blend: blend: Blend = p for i, c in enumerate(blend.prompts): log_tokenization_for_prompt_object( c, tokenizer, display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})", ) elif type(p) is FlattenedPrompt: flattened_prompt: FlattenedPrompt = p if flattened_prompt.wants_cross_attention_control: original_fragments = [] edited_fragments = [] for f in flattened_prompt.children: if type(f) is CrossAttentionControlSubstitute: original_fragments += f.original edited_fragments += f.edited else: original_fragments.append(f) edited_fragments.append(f) original_text = " ".join([x.text for x in original_fragments]) log_tokenization_for_text( original_text, tokenizer, display_label=f"{display_label_prefix}(.swap originals)", ) edited_text = " ".join([x.text for x in edited_fragments]) log_tokenization_for_text( edited_text, tokenizer, display_label=f"{display_label_prefix}(.swap replacements)", ) else: text = " ".join([x.text for x in flattened_prompt.children]) log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix) def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False): """shows how the prompt is tokenized # usually tokens have '' to indicate end-of-word, # but for readability it has been replaced with ' ' """ tokens = tokenizer.tokenize(text) tokenized = "" discarded = "" usedTokens = 0 totalTokens = len(tokens) for i in range(0, totalTokens): token = tokens[i].replace("", " ") # alternate color s = (usedTokens % 6) + 1 if truncate_if_too_long and i >= tokenizer.model_max_length: discarded = discarded + f"\x1b[0;3{s};40m{token}" else: tokenized = tokenized + f"\x1b[0;3{s};40m{token}" usedTokens += 1 if usedTokens > 0: print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):') print(f"{tokenized}\x1b[0m") if discarded != "": print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):") print(f"{discarded}\x1b[0m")