# Fixtures to support testing of the model_manager v2 installer, metadata and record store import os import shutil import time from pathlib import Path from typing import Any, Dict, List import pytest from pydantic import BaseModel from pytest import FixtureRequest from requests.sessions import Session from requests_testadapter import TestAdapter, TestSession from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.download import DownloadQueueService, DownloadQueueServiceBase from invokeai.app.services.events.events_base import EventServiceBase from invokeai.app.services.model_install import ModelInstallService, ModelInstallServiceBase from invokeai.app.services.model_load import ModelLoadService, ModelLoadServiceBase from invokeai.app.services.model_manager import ModelManagerService, ModelManagerServiceBase from invokeai.app.services.model_records import ModelRecordServiceBase, ModelRecordServiceSQL from invokeai.backend.model_manager.config import ( BaseModelType, LoRADiffusersConfig, MainCheckpointConfig, MainDiffusersConfig, ModelFormat, ModelSourceType, ModelType, ModelVariantType, VAEDiffusersConfig, ) from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache from invokeai.backend.util.logging import InvokeAILogger from tests.backend.model_manager.model_metadata.metadata_examples import ( HFTestLoraMetadata, RepoCivitaiModelMetadata1, RepoCivitaiVersionMetadata1, RepoHFMetadata1, RepoHFMetadata1_nofp16, RepoHFModelJson1, ) from tests.fixtures.sqlite_database import create_mock_sqlite_database class DummyEvent(BaseModel): """Dummy Event to use with Dummy Event service.""" event_name: str payload: Dict[str, Any] class DummyEventService(EventServiceBase): """Dummy event service for testing.""" events: List[DummyEvent] def __init__(self) -> None: super().__init__() self.events = [] def dispatch(self, event_name: str, payload: Any) -> None: """Dispatch an event by appending it to self.events.""" self.events.append(DummyEvent(event_name=payload["event"], payload=payload["data"])) # Create a temporary directory using the contents of `./data/invokeai_root` as the template @pytest.fixture def mm2_root_dir(tmp_path_factory) -> Path: root_template = Path(__file__).resolve().parent / "data" / "invokeai_root" temp_dir: Path = tmp_path_factory.mktemp("data") / "invokeai_root" shutil.copytree(root_template, temp_dir) return temp_dir @pytest.fixture def mm2_model_files(tmp_path_factory) -> Path: root_template = Path(__file__).resolve().parent / "data" / "test_files" temp_dir: Path = tmp_path_factory.mktemp("data") / "test_files" shutil.copytree(root_template, temp_dir) return temp_dir @pytest.fixture def embedding_file(mm2_model_files: Path) -> Path: return mm2_model_files / "test_embedding.safetensors" @pytest.fixture def diffusers_dir(mm2_model_files: Path) -> Path: return mm2_model_files / "test-diffusers-main" @pytest.fixture def mm2_app_config(mm2_root_dir: Path) -> InvokeAIAppConfig: app_config = InvokeAIAppConfig(models_dir=mm2_root_dir / "models", log_level="info") app_config.set_root(mm2_root_dir) return app_config @pytest.fixture def mm2_download_queue(mm2_session: Session, request: FixtureRequest) -> DownloadQueueServiceBase: download_queue = DownloadQueueService(requests_session=mm2_session) download_queue.start() def stop_queue() -> None: download_queue.stop() request.addfinalizer(stop_queue) return download_queue @pytest.fixture def mm2_loader(mm2_app_config: InvokeAIAppConfig, mm2_record_store: ModelRecordServiceBase) -> ModelLoadServiceBase: ram_cache = ModelCache( logger=InvokeAILogger.get_logger(), max_cache_size=mm2_app_config.ram, max_vram_cache_size=mm2_app_config.vram, ) convert_cache = ModelConvertCache(mm2_app_config.convert_cache_path) return ModelLoadService( app_config=mm2_app_config, ram_cache=ram_cache, convert_cache=convert_cache, ) @pytest.fixture def mm2_installer( mm2_app_config: InvokeAIAppConfig, mm2_download_queue: DownloadQueueServiceBase, mm2_session: Session, request: FixtureRequest, ) -> ModelInstallServiceBase: logger = InvokeAILogger.get_logger() db = create_mock_sqlite_database(mm2_app_config, logger) events = DummyEventService() store = ModelRecordServiceSQL(db) installer = ModelInstallService( app_config=mm2_app_config, record_store=store, download_queue=mm2_download_queue, event_bus=events, session=mm2_session, ) installer.start() def stop_installer() -> None: installer.stop() time.sleep(0.1) # avoid error message from the logger when it is closed before thread prints final message request.addfinalizer(stop_installer) return installer @pytest.fixture def mm2_record_store(mm2_app_config: InvokeAIAppConfig) -> ModelRecordServiceBase: logger = InvokeAILogger.get_logger(config=mm2_app_config) db = create_mock_sqlite_database(mm2_app_config, logger) store = ModelRecordServiceSQL(db) # add five simple config records to the database config1 = VAEDiffusersConfig( key="test_config_1", path="/tmp/foo1", format=ModelFormat.Diffusers, name="test2", base=BaseModelType.StableDiffusion2, type=ModelType.VAE, hash="111222333444", source="stabilityai/sdxl-vae", source_type=ModelSourceType.HFRepoID, ) config2 = MainCheckpointConfig( key="test_config_2", path="/tmp/foo2.ckpt", name="model1", format=ModelFormat.Checkpoint, base=BaseModelType.StableDiffusion1, type=ModelType.Main, config_path="/tmp/foo.yaml", variant=ModelVariantType.Normal, hash="111222333444", source="https://civitai.com/models/206883/split", source_type=ModelSourceType.Url, ) config3 = MainDiffusersConfig( key="test_config_3", path="/tmp/foo3", format=ModelFormat.Diffusers, name="test3", base=BaseModelType.StableDiffusionXL, type=ModelType.Main, hash="111222333444", source="author3/model3", description="This is test 3", source_type=ModelSourceType.HFRepoID, ) config4 = LoRADiffusersConfig( key="test_config_4", path="/tmp/foo4", format=ModelFormat.Diffusers, name="test4", base=BaseModelType.StableDiffusionXL, type=ModelType.LoRA, hash="111222333444", source="author4/model4", source_type=ModelSourceType.HFRepoID, ) config5 = LoRADiffusersConfig( key="test_config_5", path="/tmp/foo5", format=ModelFormat.Diffusers, name="test5", base=BaseModelType.StableDiffusion1, type=ModelType.LoRA, hash="111222333444", source="author4/model5", source_type=ModelSourceType.HFRepoID, ) store.add_model(config1) store.add_model(config2) store.add_model(config3) store.add_model(config4) store.add_model(config5) return store @pytest.fixture def mm2_model_manager( mm2_record_store: ModelRecordServiceBase, mm2_installer: ModelInstallServiceBase, mm2_loader: ModelLoadServiceBase ) -> ModelManagerServiceBase: return ModelManagerService(store=mm2_record_store, install=mm2_installer, load=mm2_loader) @pytest.fixture def mm2_session(embedding_file: Path, diffusers_dir: Path) -> Session: """This fixtures defines a series of mock URLs for testing download and installation.""" sess: Session = TestSession() sess.mount( "https://test.com/missing_model.safetensors", TestAdapter( b"missing", status=404, ), ) sess.mount( "https://huggingface.co/api/models/stabilityai/sdxl-turbo", TestAdapter( RepoHFMetadata1, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(RepoHFMetadata1)}, ), ) sess.mount( "https://huggingface.co/api/models/stabilityai/sdxl-turbo-nofp16", TestAdapter( RepoHFMetadata1_nofp16, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(RepoHFMetadata1_nofp16)}, ), ) sess.mount( "https://civitai.com/api/v1/model-versions/242807", TestAdapter( RepoCivitaiVersionMetadata1, headers={ "Content-Length": len(RepoCivitaiVersionMetadata1), }, ), ) sess.mount( "https://civitai.com/api/v1/models/215485", TestAdapter( RepoCivitaiModelMetadata1, headers={ "Content-Length": len(RepoCivitaiModelMetadata1), }, ), ) sess.mount( "https://huggingface.co/stabilityai/sdxl-turbo/resolve/main/model_index.json", TestAdapter( RepoHFModelJson1, headers={ "Content-Length": len(RepoHFModelJson1), }, ), ) with open(embedding_file, "rb") as f: data = f.read() # file is small - just 15K sess.mount( "https://www.test.foo/download/test_embedding.safetensors", TestAdapter(data, headers={"Content-Type": "application/octet-stream", "Content-Length": len(data)}), ) sess.mount( "https://huggingface.co/api/models/stabilityai/sdxl-turbo", TestAdapter( RepoHFMetadata1, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(RepoHFMetadata1)}, ), ) sess.mount( "https://huggingface.co/api/models/InvokeAI-test/textual_inversion_tests?blobs=True", TestAdapter( HFTestLoraMetadata, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(HFTestLoraMetadata)}, ), ) sess.mount( "https://huggingface.co/InvokeAI-test/textual_inversion_tests/resolve/main/learned_embeds-steps-1000.safetensors", TestAdapter( data, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(data)}, ), ) for root, _, files in os.walk(diffusers_dir): for name in files: path = Path(root, name) url_base = path.relative_to(diffusers_dir).as_posix() url = f"https://huggingface.co/stabilityai/sdxl-turbo/resolve/main/{url_base}" with open(path, "rb") as f: data = f.read() sess.mount( url, TestAdapter( data, headers={ "Content-Type": "application/json; charset=utf-8", "Content-Length": len(data), }, ), ) return sess