# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team from typing import Literal import numpy as np from pydantic import Field, validator from invokeai.app.models.image import ImageField from invokeai.app.util.misc import SEED_MAX, get_random_seed from .baseinvocation import (BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext, UIConfig) class IntCollectionOutput(BaseInvocationOutput): """A collection of integers""" type: Literal["int_collection"] = "int_collection" # Outputs collection: list[int] = Field(default=[], description="The int collection") class FloatCollectionOutput(BaseInvocationOutput): """A collection of floats""" type: Literal["float_collection"] = "float_collection" # Outputs collection: list[float] = Field( default=[], description="The float collection") class ImageCollectionOutput(BaseInvocationOutput): """A collection of images""" type: Literal["image_collection"] = "image_collection" # Outputs collection: list[ImageField] = Field( default=[], description="The output images") class Config: schema_extra = {"required": ["type", "collection"]} class RangeInvocation(BaseInvocation): """Creates a range of numbers from start to stop with step""" type: Literal["range"] = "range" # Inputs start: int = Field(default=0, description="The start of the range") stop: int = Field(default=10, description="The stop of the range") step: int = Field(default=1, description="The step of the range") class Config(InvocationConfig): schema_extra = { "ui": { "title": "Range", "tags": ["range", "integer", "collection"] }, } @validator("stop") def stop_gt_start(cls, v, values): if "start" in values and v <= values["start"]: raise ValueError("stop must be greater than start") return v def invoke(self, context: InvocationContext) -> IntCollectionOutput: return IntCollectionOutput( collection=list(range(self.start, self.stop, self.step)) ) class RangeOfSizeInvocation(BaseInvocation): """Creates a range from start to start + size with step""" type: Literal["range_of_size"] = "range_of_size" # Inputs start: int = Field(default=0, description="The start of the range") size: int = Field(default=1, description="The number of values") step: int = Field(default=1, description="The step of the range") class Config(InvocationConfig): schema_extra = { "ui": { "title": "Sized Range", "tags": ["range", "integer", "size", "collection"] }, } def invoke(self, context: InvocationContext) -> IntCollectionOutput: return IntCollectionOutput( collection=list( range( self.start, self.start + self.size, self.step))) class RandomRangeInvocation(BaseInvocation): """Creates a collection of random numbers""" type: Literal["random_range"] = "random_range" # Inputs low: int = Field(default=0, description="The inclusive low value") high: int = Field( default=np.iinfo(np.int32).max, description="The exclusive high value" ) size: int = Field(default=1, description="The number of values to generate") seed: int = Field( ge=0, le=SEED_MAX, description="The seed for the RNG (omit for random)", default_factory=get_random_seed, ) class Config(InvocationConfig): schema_extra = { "ui": { "title": "Random Range", "tags": ["range", "integer", "random", "collection"] }, } def invoke(self, context: InvocationContext) -> IntCollectionOutput: rng = np.random.default_rng(self.seed) return IntCollectionOutput( collection=list( rng.integers( low=self.low, high=self.high, size=self.size))) class ImageCollectionInvocation(BaseInvocation): """Load a collection of images and provide it as output.""" # fmt: off type: Literal["image_collection"] = "image_collection" # Inputs images: list[ImageField] = Field( default=[], description="The image collection to load" ) # fmt: on def invoke(self, context: InvocationContext) -> ImageCollectionOutput: return ImageCollectionOutput(collection=self.images) class Config(InvocationConfig): schema_extra = { "ui": { "type_hints": { "title": "Image Collection", "images": "image_collection", } }, }