# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team """ Configuration definitions for image generation models. Typical usage: from invokeai.backend.model_manager import ModelConfigFactory raw = dict(path='models/sd-1/main/foo.ckpt', name='foo', base='sd-1', type='main', config='configs/stable-diffusion/v1-inference.yaml', variant='normal', format='checkpoint' ) config = ModelConfigFactory.make_config(raw) print(config.name) Validation errors will raise an InvalidModelConfigException error. """ import time from enum import Enum from typing import Literal, Optional, Type, Union import torch from diffusers.models.modeling_utils import ModelMixin from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter from typing_extensions import Annotated, Any, Dict from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES from invokeai.app.util.misc import uuid_string from ..raw_model import RawModel # ModelMixin is the base class for all diffusers and transformers models # RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime AnyModel = Union[ModelMixin, RawModel, torch.nn.Module] class InvalidModelConfigException(Exception): """Exception for when config parser doesn't recognized this combination of model type and format.""" class BaseModelType(str, Enum): """Base model type.""" Any = "any" StableDiffusion1 = "sd-1" StableDiffusion2 = "sd-2" StableDiffusionXL = "sdxl" StableDiffusionXLRefiner = "sdxl-refiner" # Kandinsky2_1 = "kandinsky-2.1" class ModelType(str, Enum): """Model type.""" ONNX = "onnx" Main = "main" VAE = "vae" LoRA = "lora" ControlNet = "controlnet" # used by model_probe TextualInversion = "embedding" IPAdapter = "ip_adapter" CLIPVision = "clip_vision" T2IAdapter = "t2i_adapter" class SubModelType(str, Enum): """Submodel type.""" UNet = "unet" TextEncoder = "text_encoder" TextEncoder2 = "text_encoder_2" Tokenizer = "tokenizer" Tokenizer2 = "tokenizer_2" VAE = "vae" VAEDecoder = "vae_decoder" VAEEncoder = "vae_encoder" Scheduler = "scheduler" SafetyChecker = "safety_checker" class ModelVariantType(str, Enum): """Variant type.""" Normal = "normal" Inpaint = "inpaint" Depth = "depth" class ModelFormat(str, Enum): """Storage format of model.""" Diffusers = "diffusers" Checkpoint = "checkpoint" LyCORIS = "lycoris" ONNX = "onnx" Olive = "olive" EmbeddingFile = "embedding_file" EmbeddingFolder = "embedding_folder" InvokeAI = "invokeai" class SchedulerPredictionType(str, Enum): """Scheduler prediction type.""" Epsilon = "epsilon" VPrediction = "v_prediction" Sample = "sample" class ModelRepoVariant(str, Enum): """Various hugging face variants on the diffusers format.""" Default = "" # model files without "fp16" or other qualifier - empty str FP16 = "fp16" FP32 = "fp32" ONNX = "onnx" OpenVINO = "openvino" Flax = "flax" class ModelSourceType(str, Enum): """Model source type.""" Path = "path" Url = "url" HFRepoID = "hf_repo_id" CivitAI = "civitai" class ModelDefaultSettings(BaseModel): vae: str | None vae_precision: str | None scheduler: SCHEDULER_NAME_VALUES | None steps: int | None cfg_scale: float | None cfg_rescale_multiplier: float | None class ModelConfigBase(BaseModel): """Base class for model configuration information.""" key: str = Field(description="A unique key for this model.", default_factory=uuid_string) hash: str = Field(description="The hash of the model file(s).") path: str = Field( description="Path to the model on the filesystem. Relative paths are relative to the Invoke root directory." ) name: str = Field(description="Name of the model.") base: BaseModelType = Field(description="The base model.") description: Optional[str] = Field(description="Model description", default=None) source: str = Field(description="The original source of the model (path, URL or repo_id).") source_type: ModelSourceType = Field(description="The type of source") source_api_response: Optional[str] = Field( description="The original API response from the source, as stringified JSON.", default=None ) default_settings: Optional[ModelDefaultSettings] = Field( description="Default settings for this model", default=None ) cover_image: Optional[str] = Field(description="Url for image to preview model", default=None) @staticmethod def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None: schema["required"].extend(["key", "type", "format"]) model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra) class CheckpointConfigBase(ModelConfigBase): """Model config for checkpoint-style models.""" format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint config_path: str = Field(description="path to the checkpoint model config file") converted_at: Optional[float] = Field( description="When this model was last converted to diffusers", default_factory=time.time ) class DiffusersConfigBase(ModelConfigBase): """Model config for diffusers-style models.""" format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.Default class LoRAConfigBase(ModelConfigBase): type: Literal[ModelType.LoRA] = ModelType.LoRA trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None) class LoRALyCORISConfig(LoRAConfigBase): """Model config for LoRA/Lycoris models.""" format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.LoRA.value}.{ModelFormat.LyCORIS.value}") class LoRADiffusersConfig(LoRAConfigBase): """Model config for LoRA/Diffusers models.""" format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.LoRA.value}.{ModelFormat.Diffusers.value}") class VAECheckpointConfig(CheckpointConfigBase): """Model config for standalone VAE models.""" type: Literal[ModelType.VAE] = ModelType.VAE format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.VAE.value}.{ModelFormat.Checkpoint.value}") class VAEDiffusersConfig(ModelConfigBase): """Model config for standalone VAE models (diffusers version).""" type: Literal[ModelType.VAE] = ModelType.VAE format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.VAE.value}.{ModelFormat.Diffusers.value}") class ControlNetDiffusersConfig(DiffusersConfigBase): """Model config for ControlNet models (diffusers version).""" type: Literal[ModelType.ControlNet] = ModelType.ControlNet format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Diffusers.value}") class ControlNetCheckpointConfig(CheckpointConfigBase): """Model config for ControlNet models (diffusers version).""" type: Literal[ModelType.ControlNet] = ModelType.ControlNet format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.ControlNet.value}.{ModelFormat.Checkpoint.value}") class TextualInversionFileConfig(ModelConfigBase): """Model config for textual inversion embeddings.""" type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion format: Literal[ModelFormat.EmbeddingFile] = ModelFormat.EmbeddingFile @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFile.value}") class TextualInversionFolderConfig(ModelConfigBase): """Model config for textual inversion embeddings.""" type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion format: Literal[ModelFormat.EmbeddingFolder] = ModelFormat.EmbeddingFolder @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.TextualInversion.value}.{ModelFormat.EmbeddingFolder.value}") class MainConfigBase(ModelConfigBase): type: Literal[ModelType.Main] = ModelType.Main trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None) class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase): """Model config for main checkpoint models.""" variant: ModelVariantType = ModelVariantType.Normal prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon upcast_attention: bool = False @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}") class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase): """Model config for main diffusers models.""" @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.Main.value}.{ModelFormat.Diffusers.value}") class IPAdapterConfig(ModelConfigBase): """Model config for IP Adaptor format models.""" type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter image_encoder_model_id: str format: Literal[ModelFormat.InvokeAI] @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.InvokeAI.value}") class CLIPVisionDiffusersConfig(ModelConfigBase): """Model config for CLIPVision.""" type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision format: Literal[ModelFormat.Diffusers] @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.CLIPVision.value}.{ModelFormat.Diffusers.value}") class T2IAdapterConfig(ModelConfigBase): """Model config for T2I.""" type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter format: Literal[ModelFormat.Diffusers] @staticmethod def get_tag() -> Tag: return Tag(f"{ModelType.T2IAdapter.value}.{ModelFormat.Diffusers.value}") def get_model_discriminator_value(v: Any) -> str: """ Computes the discriminator value for a model config. https://docs.pydantic.dev/latest/concepts/unions/#discriminated-unions-with-callable-discriminator """ format_ = None type_ = None if isinstance(v, dict): format_ = v.get("format") if isinstance(format_, Enum): format_ = format_.value type_ = v.get("type") if isinstance(type_, Enum): type_ = type_.value else: format_ = v.format.value type_ = v.type.value v = f"{type_}.{format_}" return v AnyModelConfig = Annotated[ Union[ Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()], Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()], Annotated[VAEDiffusersConfig, VAEDiffusersConfig.get_tag()], Annotated[VAECheckpointConfig, VAECheckpointConfig.get_tag()], Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()], Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()], Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()], Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()], Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()], Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()], Annotated[IPAdapterConfig, IPAdapterConfig.get_tag()], Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()], Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()], ], Discriminator(get_model_discriminator_value), ] AnyModelConfigValidator = TypeAdapter(AnyModelConfig) class ModelConfigFactory(object): """Class for parsing config dicts into StableDiffusion Config obects.""" @classmethod def make_config( cls, model_data: Union[Dict[str, Any], AnyModelConfig], key: Optional[str] = None, dest_class: Optional[Type[ModelConfigBase]] = None, timestamp: Optional[float] = None, ) -> AnyModelConfig: """ Return the appropriate config object from raw dict values. :param model_data: A raw dict corresponding the obect fields to be parsed into a ModelConfigBase obect (or descendent), or a ModelConfigBase object, which will be passed through unchanged. :param dest_class: The config class to be returned. If not provided, will be selected automatically. """ model: Optional[ModelConfigBase] = None if isinstance(model_data, ModelConfigBase): model = model_data elif dest_class: model = dest_class.model_validate(model_data) else: # mypy doesn't typecheck TypeAdapters well? model = AnyModelConfigValidator.validate_python(model_data) # type: ignore assert model is not None if key: model.key = key if isinstance(model, CheckpointConfigBase) and timestamp is not None: model.converted_at = timestamp return model # type: ignore