import pytest import torch from enum import Enum from invokeai.backend.model_management.model_cache import ModelCache, MODEL_CLASSES class DummyModelBase(object): '''Base class for dummy component of a diffusers model''' def __init__(self, repo_id): self.repo_id = repo_id self.device = torch.device('cpu') @classmethod def from_pretrained(cls, repo_id:str, revision:str=None, subfolder:str=None, cache_dir:str=None, ): return cls(repo_id) def to(self, device): self.device = device class DummyModelType1(DummyModelBase): pass class DummyModelType2(DummyModelBase): pass class DummyPipeline(DummyModelBase): '''Dummy pipeline object is a composite of several types''' def __init__(self,repo_id): super().__init__(repo_id) self.dummy_model_type1 = DummyModelType1('dummy/type1') self.dummy_model_type2 = DummyModelType2('dummy/type2') class DMType(str, Enum): dummy_pipeline = 'dummy_pipeline' type1 = 'dummy_model_type1' type2 = 'dummy_model_type2' MODEL_CLASSES.update( { DMType.dummy_pipeline: DummyPipeline, DMType.type1: DummyModelType1, DMType.type2: DummyModelType2, } ) cache = ModelCache(max_cache_size=4) def test_pipeline_fetch(): assert cache.cache_size()==0 with cache.get_model('dummy/pipeline1',DMType.dummy_pipeline) as pipeline1,\ cache.get_model('dummy/pipeline1',DMType.dummy_pipeline) as pipeline1a,\ cache.get_model('dummy/pipeline2',DMType.dummy_pipeline) as pipeline2: assert pipeline1 is not None, 'get_model() should not return None' assert pipeline1a is not None, 'get_model() should not return None' assert pipeline2 is not None, 'get_model() should not return None' assert type(pipeline1)==DummyPipeline,'get_model() did not return model of expected type' assert pipeline1==pipeline1a,'pipelines with the same repo_id should be the same' assert pipeline1!=pipeline2,'pipelines with different repo_ids should not be the same' assert len(cache.models)==2,'cache should uniquely cache models with same identity' with cache.get_model('dummy/pipeline3',DMType.dummy_pipeline) as pipeline3,\ cache.get_model('dummy/pipeline4',DMType.dummy_pipeline) as pipeline4: assert len(cache.models)==4,'cache did not grow as expected' def test_signatures(): with cache.get_model('dummy/pipeline',DMType.dummy_pipeline,revision='main') as pipeline1,\ cache.get_model('dummy/pipeline',DMType.dummy_pipeline,revision='fp16') as pipeline2,\ cache.get_model('dummy/pipeline',DMType.dummy_pipeline,revision='main',subfolder='foo') as pipeline3: assert pipeline1 != pipeline2,'models are distinguished by their revision' assert pipeline1 != pipeline3,'models are distinguished by their subfolder' def test_pipeline_device(): with cache.get_model('dummy/pipeline1',DMType.type1) as model1: assert model1.device==torch.device('cuda'),'when in context, model device should be in GPU' with cache.get_model('dummy/pipeline1',DMType.type1, gpu_load=False) as model1: assert model1.device==torch.device('cpu'),'when gpu_load=False, model device should be CPU' def test_submodel_fetch(): with cache.get_model(repo_id_or_path='dummy/pipeline1',model_type=DMType.dummy_pipeline) as pipeline,\ cache.get_model(repo_id_or_path='dummy/pipeline1',model_type=DMType.dummy_pipeline,submodel=DMType.type1) as part1,\ cache.get_model(repo_id_or_path='dummy/pipeline2',model_type=DMType.dummy_pipeline,submodel=DMType.type1) as part2: assert type(part1)==DummyModelType1,'returned submodel is not of expected type' assert part1.device==torch.device('cuda'),'returned submodel should be in the GPU when in context' assert pipeline.dummy_model_type1==part1,'returned submodel should match the corresponding subpart of parent model' assert pipeline.dummy_model_type1!=part2,'returned submodel should not match the subpart of a different parent'