import os from builtins import float from typing import List, Union from pydantic import BaseModel, Field from invokeai.app.invocations.baseinvocation import ( BaseInvocation, BaseInvocationOutput, FieldDescriptions, Input, InputField, InvocationContext, OutputField, UIType, invocation, invocation_output, ) from invokeai.app.invocations.primitives import ImageField from invokeai.backend.model_management.models.base import BaseModelType, ModelType from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id class IPAdapterModelField(BaseModel): model_name: str = Field(description="Name of the IP-Adapter model") base_model: BaseModelType = Field(description="Base model") class CLIPVisionModelField(BaseModel): model_name: str = Field(description="Name of the CLIP Vision image encoder model") base_model: BaseModelType = Field(description="Base model (usually 'Any')") class IPAdapterField(BaseModel): image: ImageField = Field(description="The IP-Adapter image prompt.") ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.") image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.") weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet") # weight: float = Field(default=1.0, ge=0, description="The weight of the IP-Adapter.") begin_step_percent: float = Field( default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)" ) end_step_percent: float = Field( default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" ) @invocation_output("ip_adapter_output") class IPAdapterOutput(BaseInvocationOutput): # Outputs ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter") @invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.0.0") class IPAdapterInvocation(BaseInvocation): """Collects IP-Adapter info to pass to other nodes.""" # Inputs image: ImageField = InputField(description="The IP-Adapter image prompt.") ip_adapter_model: IPAdapterModelField = InputField( description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ) # weight: float = InputField(default=1.0, description="The weight of the IP-Adapter.", ui_type=UIType.Float) weight: Union[float, List[float]] = InputField( default=1, ge=0, description="The weight given to the IP-Adapter", ui_type=UIType.Float, title="Weight" ) begin_step_percent: float = InputField( default=0, ge=-1, le=2, description="When the IP-Adapter is first applied (% of total steps)" ) end_step_percent: float = InputField( default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" ) def invoke(self, context: InvocationContext) -> IPAdapterOutput: # Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model. ip_adapter_info = context.services.model_manager.model_info( self.ip_adapter_model.model_name, self.ip_adapter_model.base_model, ModelType.IPAdapter ) # HACK(ryand): This is bad for a couple of reasons: 1) we are bypassing the model manager to read the model # directly, and 2) we are reading from disk every time this invocation is called without caching the result. # A better solution would be to store the image encoder model reference in the IP-Adapter model info, but this # is currently messy due to differences between how the model info is generated when installing a model from # disk vs. downloading the model. image_encoder_model_id = get_ip_adapter_image_encoder_model_id( os.path.join(context.services.configuration.get_config().models_path, ip_adapter_info["path"]) ) image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip() image_encoder_model = CLIPVisionModelField( model_name=image_encoder_model_name, base_model=BaseModelType.Any, ) return IPAdapterOutput( ip_adapter=IPAdapterField( image=self.image, ip_adapter_model=self.ip_adapter_model, image_encoder_model=image_encoder_model, weight=self.weight, begin_step_percent=self.begin_step_percent, end_step_percent=self.end_step_percent, ), )