# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose # Modified pathing to suit Invoke from pathlib import Path import numpy as np import onnxruntime as ort from invokeai.app.services.config.config_default import get_config from invokeai.backend.image_util.dw_openpose.onnxdet import inference_detector from invokeai.backend.image_util.dw_openpose.onnxpose import inference_pose from invokeai.backend.util.devices import TorchDevice config = get_config() class Wholebody: def __init__(self, onnx_det: Path, onnx_pose: Path): device = TorchDevice.choose_torch_device() providers = ["CUDAExecutionProvider"] if device.type == "cuda" else ["CPUExecutionProvider"] self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers) self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers) def __call__(self, oriImg): det_result = inference_detector(self.session_det, oriImg) keypoints, scores = inference_pose(self.session_pose, det_result, oriImg) keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1) # compute neck joint neck = np.mean(keypoints_info[:, [5, 6]], axis=1) # neck score when visualizing pred neck[:, 2:4] = np.logical_and(keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int) new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1) mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3] openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17] new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx] keypoints_info = new_keypoints_info keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2] return keypoints, scores