import argparse import os import torch import numpy as np from omegaconf import OmegaConf from PIL import Image from tqdm import tqdm, trange from itertools import islice from einops import rearrange from torchvision.utils import make_grid from pytorch_lightning import seed_everything from torch import autocast from contextlib import nullcontext import k_diffusion as K import torch.nn as nn from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler from ldm.invoke.devices import choose_torch_device def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.to(choose_torch_device()) model.eval() return model def main(): parser = argparse.ArgumentParser() parser.add_argument( "--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render", ) parser.add_argument( "--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples" ) parser.add_argument( "--skip_grid", action="store_true", help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", ) parser.add_argument( "--skip_save", action="store_true", help="do not save individual samples. For speed measurements.", ) parser.add_argument( "--ddim_steps", type=int, default=50, help="number of ddim sampling steps", ) parser.add_argument( "--plms", action="store_true", help="use plms sampling", ) parser.add_argument( "--klms", action="store_true", help="use klms sampling", ) parser.add_argument( "--laion400m", action="store_true", help="uses the LAION400M model", ) parser.add_argument( "--fixed_code", action="store_true", help="if enabled, uses the same starting code across samples ", ) parser.add_argument( "--ddim_eta", type=float, default=0.0, help="ddim eta (eta=0.0 corresponds to deterministic sampling", ) parser.add_argument( "--n_iter", type=int, default=2, help="sample this often", ) parser.add_argument( "--H", type=int, default=512, help="image height, in pixel space", ) parser.add_argument( "--W", type=int, default=512, help="image width, in pixel space", ) parser.add_argument( "--C", type=int, default=4, help="latent channels", ) parser.add_argument( "--f", type=int, default=8, help="downsampling factor", ) parser.add_argument( "--n_samples", type=int, default=3, help="how many samples to produce for each given prompt. A.k.a. batch size", ) parser.add_argument( "--n_rows", type=int, default=0, help="rows in the grid (default: n_samples)", ) parser.add_argument( "--scale", type=float, default=7.5, help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", ) parser.add_argument( "--from-file", type=str, help="if specified, load prompts from this file", ) parser.add_argument( "--config", type=str, default="configs/stable-diffusion/v1-inference.yaml", help="path to config which constructs model", ) parser.add_argument( "--ckpt", type=str, default="models/ldm/stable-diffusion-v1/model.ckpt", help="path to checkpoint of model", ) parser.add_argument( "--seed", type=int, default=42, help="the seed (for reproducible sampling)", ) parser.add_argument( "--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast" ) opt = parser.parse_args() if opt.laion400m: print("Falling back to LAION 400M model...") opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml" opt.ckpt = "models/ldm/text2img-large/model.ckpt" opt.outdir = "outputs/txt2img-samples-laion400m" config = OmegaConf.load(f"{opt.config}") model = load_model_from_config(config, f"{opt.ckpt}") seed_everything(opt.seed) device = torch.device(choose_torch_device()) model = model.to(device) # for klms model_wrap = K.external.CompVisDenoiser(model) class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale): x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) return uncond + (cond - uncond) * cond_scale if opt.plms: sampler = PLMSSampler(model) else: sampler = DDIMSampler(model) os.makedirs(opt.outdir, exist_ok=True) outpath = opt.outdir batch_size = opt.n_samples n_rows = opt.n_rows if opt.n_rows > 0 else batch_size if not opt.from_file: prompt = opt.prompt assert prompt is not None data = [batch_size * [prompt]] else: print(f"reading prompts from {opt.from_file}") with open(opt.from_file, "r") as f: data = f.read().splitlines() if len(data) >= batch_size: data = list(chunk(data, batch_size)) else: while len(data) < batch_size: data.append(data[-1]) data = [data] sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) base_count = len(os.listdir(sample_path)) grid_count = len(os.listdir(outpath)) - 1 start_code = None if opt.fixed_code: shape = [opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f] if device.type == "mps": start_code = torch.randn(shape, device="cpu").to(device) else: torch.randn(shape, device=device) precision_scope = autocast if opt.precision == "autocast" else nullcontext if device.type in ["mps", "cpu"]: precision_scope = nullcontext # have to use f32 on mps with torch.no_grad(): with precision_scope(device.type): with model.ema_scope(): all_samples = list() for n in trange(opt.n_iter, desc="Sampling"): for prompts in tqdm(data, desc="data"): uc = None if opt.scale != 1.0: uc = model.get_learned_conditioning(batch_size * [""]) if isinstance(prompts, tuple): prompts = list(prompts) c = model.get_learned_conditioning(prompts) shape = [opt.C, opt.H // opt.f, opt.W // opt.f] if not opt.klms: samples_ddim, _ = sampler.sample( S=opt.ddim_steps, conditioning=c, batch_size=opt.n_samples, shape=shape, verbose=False, unconditional_guidance_scale=opt.scale, unconditional_conditioning=uc, eta=opt.ddim_eta, x_T=start_code, ) else: sigmas = model_wrap.get_sigmas(opt.ddim_steps) if start_code: x = start_code else: x = torch.randn([opt.n_samples, *shape], device=device) * sigmas[0] # for GPU draw model_wrap_cfg = CFGDenoiser(model_wrap) extra_args = {"cond": c, "uncond": uc, "cond_scale": opt.scale} samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args=extra_args) x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) if not opt.skip_save: for x_sample in x_samples_ddim: x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c") Image.fromarray(x_sample.astype(np.uint8)).save( os.path.join(sample_path, f"{base_count:05}.png") ) base_count += 1 if not opt.skip_grid: all_samples.append(x_samples_ddim) if not opt.skip_grid: # additionally, save as grid grid = torch.stack(all_samples, 0) grid = rearrange(grid, "n b c h w -> (n b) c h w") grid = make_grid(grid, nrow=n_rows) # to image grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy() Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f"grid-{grid_count:04}.png")) grid_count += 1 print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.") if __name__ == "__main__": main()