from typing import Optional import torch import torchvision.transforms as tv_transforms from torchvision.transforms.functional import resize as tv_resize from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation from invokeai.app.invocations.fields import ( DenoiseMaskField, FieldDescriptions, FluxConditioningField, Input, InputField, LatentsField, WithBoard, WithMetadata, ) from invokeai.app.invocations.model import TransformerField from invokeai.app.invocations.primitives import LatentsOutput from invokeai.app.services.session_processor.session_processor_common import CanceledException from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.backend.flux.denoise import denoise from invokeai.backend.flux.model import Flux from invokeai.backend.flux.sampling_utils import ( generate_img_ids, get_noise, get_schedule, pack, unpack, ) from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo from invokeai.backend.util.devices import TorchDevice EPS = 1e-6 @invocation( "flux_text_to_image", title="FLUX Text to Image", tags=["image", "flux"], category="image", version="2.0.0", classification=Classification.Prototype, ) class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard): """Text-to-image generation using a FLUX model.""" # If latents is provided, this means we are doing image-to-image. latents: Optional[LatentsField] = InputField( default=None, description=FieldDescriptions.latents, input=Input.Connection, ) denoise_mask: Optional[DenoiseMaskField] = InputField( default=None, description=FieldDescriptions.denoise_mask, input=Input.Connection, ) denoising_start: float = InputField( default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start, ) transformer: TransformerField = InputField( description=FieldDescriptions.flux_model, input=Input.Connection, title="Transformer", ) positive_text_conditioning: FluxConditioningField = InputField( description=FieldDescriptions.positive_cond, input=Input.Connection ) width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.") height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.") num_steps: int = InputField( default=4, description="Number of diffusion steps. Recommended values are schnell: 4, dev: 50." ) guidance: float = InputField( default=4.0, description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.", ) seed: int = InputField(default=0, description="Randomness seed for reproducibility.") @torch.no_grad() def invoke(self, context: InvocationContext) -> LatentsOutput: latents = self._run_diffusion(context) latents = latents.detach().to("cpu") name = context.tensors.save(tensor=latents) return LatentsOutput.build(latents_name=name, latents=latents, seed=None) def _run_diffusion( self, context: InvocationContext, ): inference_dtype = torch.bfloat16 # Load the conditioning data. cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name) assert len(cond_data.conditionings) == 1 flux_conditioning = cond_data.conditionings[0] assert isinstance(flux_conditioning, FLUXConditioningInfo) flux_conditioning = flux_conditioning.to(dtype=inference_dtype) t5_embeddings = flux_conditioning.t5_embeds clip_embeddings = flux_conditioning.clip_embeds # Load the input latents, if provided. init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None if init_latents is not None: init_latents = init_latents.to(device=TorchDevice.choose_torch_device(), dtype=inference_dtype) # Prepare input noise. noise = get_noise( num_samples=1, height=self.height, width=self.width, device=TorchDevice.choose_torch_device(), dtype=inference_dtype, seed=self.seed, ) transformer_info = context.models.load(self.transformer.transformer) is_schnell = "schnell" in transformer_info.config.config_path image_seq_len = noise.shape[-1] * noise.shape[-2] // 4 timesteps = get_schedule( num_steps=self.num_steps, image_seq_len=image_seq_len, shift=not is_schnell, ) # Prepare input latent image. if self.denoising_start > EPS: # If denoising_start > 0, we are doing image-to-image. if init_latents is None: raise ValueError("latents must be provided if denoising_start > 0.") # Clip the timesteps schedule based on denoising_start. # TODO(ryand): Should we apply denoising_start in timestep-space rather than timestep-index-space? start_idx = int(self.denoising_start * len(timesteps)) timesteps = timesteps[start_idx:] # Noise the orig_latents by the appropriate amount for the first timestep. t_0 = timesteps[0] x = t_0 * noise + (1.0 - t_0) * init_latents else: # We are not doing image-to-image, so we are starting from noise. x = noise # Prepare inpaint mask. inpaint_mask = self._prep_inpaint_mask(context, x) if inpaint_mask is not None: assert init_latents is not None # Expand the inpaint mask to the same shape as the init_latents so that when we pack inpaint_mask it lines # up with the init_latents. inpaint_mask = inpaint_mask.expand_as(init_latents) b, _c, h, w = x.shape img_ids = generate_img_ids(h=h, w=w, batch_size=b, device=x.device, dtype=x.dtype) bs, t5_seq_len, _ = t5_embeddings.shape txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()) # Pack all latent tensors. init_latents = pack(init_latents) if init_latents is not None else None inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None noise = pack(noise) x = pack(x) # Verify that we calculated the image_seq_len correctly. assert image_seq_len == x.shape[1] with transformer_info as transformer: assert isinstance(transformer, Flux) def step_callback() -> None: if context.util.is_canceled(): raise CanceledException # TODO: Make this look like the image before re-enabling # latent_image = unpack(img.float(), self.height, self.width) # latent_image = latent_image.squeeze() # Remove unnecessary dimensions # flattened_tensor = latent_image.reshape(-1) # Flatten to shape [48*128*128] # # Create a new tensor of the required shape [255, 255, 3] # latent_image = flattened_tensor[: 255 * 255 * 3].reshape(255, 255, 3) # Reshape to RGB format # # Convert to a NumPy array and then to a PIL Image # image = Image.fromarray(latent_image.cpu().numpy().astype(np.uint8)) # (width, height) = image.size # width *= 8 # height *= 8 # dataURL = image_to_dataURL(image, image_format="JPEG") # # TODO: move this whole function to invocation context to properly reference these variables # context._services.events.emit_invocation_denoise_progress( # context._data.queue_item, # context._data.invocation, # state, # ProgressImage(dataURL=dataURL, width=width, height=height), # ) x = denoise( model=transformer, img=x, img_ids=img_ids, txt=t5_embeddings, txt_ids=txt_ids, vec=clip_embeddings, timesteps=timesteps, step_callback=step_callback, guidance=self.guidance, init_latents=init_latents, noise=noise, inpaint_mask=inpaint_mask, ) x = unpack(x.float(), self.height, self.width) return x def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None: """Prepare the inpaint mask. Loads the mask, resizes if necessary, casts to same device/dtype as latents. Returns: tuple[torch.Tensor | None, bool]: (mask, is_gradient_mask) """ if self.denoise_mask is None: return None mask = context.tensors.load(self.denoise_mask.mask_name) _, _, latent_height, latent_width = latents.shape mask = tv_resize( img=mask, size=[latent_height, latent_width], interpolation=tv_transforms.InterpolationMode.BILINEAR, antialias=False, ) mask = mask.to(device=latents.device, dtype=latents.dtype) return mask