import torch import torch.nn as nn from functools import partial import clip from einops import rearrange, repeat from transformers import CLIPTokenizer, CLIPTextModel import kornia from ldm.invoke.devices import choose_torch_device from ldm.modules.x_transformer import ( Encoder, TransformerWrapper, ) # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test def _expand_mask(mask, dtype, tgt_len=None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = ( mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) ) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill( inverted_mask.to(torch.bool), torch.finfo(dtype).min ) def _build_causal_attention_mask(bsz, seq_len, dtype): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) mask.fill_(torch.tensor(torch.finfo(dtype).min)) mask.triu_(1) # zero out the lower diagonal mask = mask.unsqueeze(1) # expand mask return mask class AbstractEncoder(nn.Module): def __init__(self): super().__init__() def encode(self, *args, **kwargs): raise NotImplementedError class ClassEmbedder(nn.Module): def __init__(self, embed_dim, n_classes=1000, key='class'): super().__init__() self.key = key self.embedding = nn.Embedding(n_classes, embed_dim) def forward(self, batch, key=None): if key is None: key = self.key # this is for use in crossattn c = batch[key][:, None] c = self.embedding(c) return c class TransformerEmbedder(AbstractEncoder): """Some transformer encoder layers""" def __init__( self, n_embed, n_layer, vocab_size, max_seq_len=77, device=choose_torch_device(), ): super().__init__() self.device = device self.transformer = TransformerWrapper( num_tokens=vocab_size, max_seq_len=max_seq_len, attn_layers=Encoder(dim=n_embed, depth=n_layer), ) def forward(self, tokens): tokens = tokens.to(self.device) # meh z = self.transformer(tokens, return_embeddings=True) return z def encode(self, x): return self(x) class BERTTokenizer(AbstractEncoder): """Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" def __init__( self, device=choose_torch_device(), vq_interface=True, max_length=77 ): super().__init__() from transformers import ( BertTokenizerFast, ) # TODO: add to reuquirements # Modified to allow to run on non-internet connected compute nodes. # Model needs to be loaded into cache from an internet-connected machine # by running: # from transformers import BertTokenizerFast # BertTokenizerFast.from_pretrained("bert-base-uncased") try: self.tokenizer = BertTokenizerFast.from_pretrained( 'bert-base-uncased', local_files_only=True ) except OSError: raise SystemExit( "* Couldn't load Bert tokenizer files. Try running scripts/preload_models.py from an internet-conected machine." ) self.device = device self.vq_interface = vq_interface self.max_length = max_length def forward(self, text): batch_encoding = self.tokenizer( text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding='max_length', return_tensors='pt', ) tokens = batch_encoding['input_ids'].to(self.device) return tokens @torch.no_grad() def encode(self, text): tokens = self(text) if not self.vq_interface: return tokens return None, None, [None, None, tokens] def decode(self, text): return text class BERTEmbedder(AbstractEncoder): """Uses the BERT tokenizr model and add some transformer encoder layers""" def __init__( self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, device=choose_torch_device(), use_tokenizer=True, embedding_dropout=0.0, ): super().__init__() self.use_tknz_fn = use_tokenizer if self.use_tknz_fn: self.tknz_fn = BERTTokenizer( vq_interface=False, max_length=max_seq_len ) self.device = device self.transformer = TransformerWrapper( num_tokens=vocab_size, max_seq_len=max_seq_len, attn_layers=Encoder(dim=n_embed, depth=n_layer), emb_dropout=embedding_dropout, ) def forward(self, text, embedding_manager=None): if self.use_tknz_fn: tokens = self.tknz_fn(text) # .to(self.device) else: tokens = text z = self.transformer( tokens, return_embeddings=True, embedding_manager=embedding_manager ) return z def encode(self, text, **kwargs): # output of length 77 return self(text, **kwargs) class SpatialRescaler(nn.Module): def __init__( self, n_stages=1, method='bilinear', multiplier=0.5, in_channels=3, out_channels=None, bias=False, ): super().__init__() self.n_stages = n_stages assert self.n_stages >= 0 assert method in [ 'nearest', 'linear', 'bilinear', 'trilinear', 'bicubic', 'area', ] self.multiplier = multiplier self.interpolator = partial( torch.nn.functional.interpolate, mode=method ) self.remap_output = out_channels is not None if self.remap_output: print( f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.' ) self.channel_mapper = nn.Conv2d( in_channels, out_channels, 1, bias=bias ) def forward(self, x): for stage in range(self.n_stages): x = self.interpolator(x, scale_factor=self.multiplier) if self.remap_output: x = self.channel_mapper(x) return x def encode(self, x): return self(x) class FrozenCLIPEmbedder(AbstractEncoder): """Uses the CLIP transformer encoder for text (from Hugging Face)""" def __init__( self, version='openai/clip-vit-large-patch14', device=choose_torch_device(), max_length=77, ): super().__init__() self.tokenizer = CLIPTokenizer.from_pretrained( version, local_files_only=True ) self.transformer = CLIPTextModel.from_pretrained( version, local_files_only=True ) self.device = device self.max_length = max_length self.freeze() def embedding_forward( self, input_ids=None, position_ids=None, inputs_embeds=None, embedding_manager=None, ) -> torch.Tensor: seq_length = ( input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] ) if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) if embedding_manager is not None: inputs_embeds = embedding_manager(input_ids, inputs_embeds) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings self.transformer.text_model.embeddings.forward = ( embedding_forward.__get__(self.transformer.text_model.embeddings) ) def encoder_forward( self, inputs_embeds, attention_mask=None, causal_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) return hidden_states self.transformer.text_model.encoder.forward = encoder_forward.__get__( self.transformer.text_model.encoder ) def text_encoder_forward( self, input_ids=None, attention_mask=None, position_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, embedding_manager=None, ): output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if input_ids is None: raise ValueError('You have to specify either input_ids') input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings( input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager, ) bsz, seq_len = input_shape # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = _build_causal_attention_mask( bsz, seq_len, hidden_states.dtype ).to(hidden_states.device) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask( attention_mask, hidden_states.dtype ) last_hidden_state = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = self.final_layer_norm(last_hidden_state) return last_hidden_state self.transformer.text_model.forward = text_encoder_forward.__get__( self.transformer.text_model ) def transformer_forward( self, input_ids=None, attention_mask=None, position_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, embedding_manager=None, ): return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, embedding_manager=embedding_manager, ) self.transformer.forward = transformer_forward.__get__( self.transformer ) def freeze(self): self.transformer = self.transformer.eval() for param in self.parameters(): param.requires_grad = False def forward(self, text, **kwargs): batch_encoding = self.tokenizer( text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding='max_length', return_tensors='pt', ) tokens = batch_encoding['input_ids'].to(self.device) z = self.transformer(input_ids=tokens, **kwargs) return z def encode(self, text, **kwargs): return self(text, **kwargs) class FrozenCLIPTextEmbedder(nn.Module): """ Uses the CLIP transformer encoder for text. """ def __init__( self, version='ViT-L/14', device=choose_torch_device(), max_length=77, n_repeat=1, normalize=True, ): super().__init__() self.model, _ = clip.load(version, jit=False, device=device) self.device = device self.max_length = max_length self.n_repeat = n_repeat self.normalize = normalize def freeze(self): self.model = self.model.eval() for param in self.parameters(): param.requires_grad = False def forward(self, text): tokens = clip.tokenize(text).to(self.device) z = self.model.encode_text(tokens) if self.normalize: z = z / torch.linalg.norm(z, dim=1, keepdim=True) return z def encode(self, text): z = self(text) if z.ndim == 2: z = z[:, None, :] z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) return z class FrozenClipImageEmbedder(nn.Module): """ Uses the CLIP image encoder. """ def __init__( self, model, jit=False, device=choose_torch_device(), antialias=False, ): super().__init__() self.model, _ = clip.load(name=model, device=device, jit=jit) self.antialias = antialias self.register_buffer( 'mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False, ) self.register_buffer( 'std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False, ) def preprocess(self, x): # normalize to [0,1] x = kornia.geometry.resize( x, (224, 224), interpolation='bicubic', align_corners=True, antialias=self.antialias, ) x = (x + 1.0) / 2.0 # renormalize according to clip x = kornia.enhance.normalize(x, self.mean, self.std) return x def forward(self, x): # x is assumed to be in range [-1,1] return self.model.encode_image(self.preprocess(x)) if __name__ == '__main__': from ldm.util import count_params model = FrozenCLIPEmbedder() count_params(model, verbose=True)