#!/usr/bin/env python # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Before running stable-diffusion on an internet-isolated machine, # run this script from one with internet connectivity. The # two machines must share a common .cache directory. # # Coauthor: Kevin Turner http://github.com/keturn # import sys import argparse import io import os import psutil import shutil import textwrap import torch import traceback import yaml import warnings from argparse import Namespace from enum import Enum from pathlib import Path from shutil import get_terminal_size from typing import get_type_hints, get_args, Any from urllib import request import npyscreen import transformers import omegaconf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from huggingface_hub import HfFolder from huggingface_hub import login as hf_hub_login from omegaconf import OmegaConf from tqdm import tqdm from transformers import ( CLIPTextModel, CLIPTextConfig, CLIPTokenizer, AutoFeatureExtractor, BertTokenizerFast, ) import invokeai.configs as configs from invokeai.app.services.config import ( InvokeAIAppConfig, ) from invokeai.backend.util.logging import InvokeAILogger from invokeai.frontend.install.model_install import addModelsForm, process_and_execute # TO DO - Move all the frontend code into invokeai.frontend.install from invokeai.frontend.install.widgets import ( SingleSelectColumns, SingleSelectColumnsSimple, MultiSelectColumns, CenteredButtonPress, FileBox, set_min_terminal_size, CyclingForm, MIN_COLS, MIN_LINES, WindowTooSmallException, ) from invokeai.backend.install.legacy_arg_parsing import legacy_parser from invokeai.backend.install.model_install_backend import ( hf_download_from_pretrained, InstallSelections, ModelInstall, ) from invokeai.backend.model_management.model_probe import ModelType, BaseModelType from pydantic.error_wrappers import ValidationError warnings.filterwarnings("ignore") transformers.logging.set_verbosity_error() def get_literal_fields(field) -> list[Any]: return get_args(get_type_hints(InvokeAIAppConfig).get(field)) # --------------------------globals----------------------- config = InvokeAIAppConfig.get_config() Model_dir = "models" Default_config_file = config.model_conf_path SD_Configs = config.legacy_conf_path PRECISION_CHOICES = get_literal_fields("precision") DEVICE_CHOICES = get_literal_fields("device") ATTENTION_CHOICES = get_literal_fields("attention_type") ATTENTION_SLICE_CHOICES = get_literal_fields("attention_slice_size") GENERATION_OPT_CHOICES = ["sequential_guidance", "force_tiled_decode", "lazy_offload"] GB = 1073741824 # GB in bytes HAS_CUDA = torch.cuda.is_available() _, MAX_VRAM = torch.cuda.mem_get_info() if HAS_CUDA else (0, 0) MAX_VRAM /= GB MAX_RAM = psutil.virtual_memory().total / GB INIT_FILE_PREAMBLE = """# InvokeAI initialization file # This is the InvokeAI initialization file, which contains command-line default values. # Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting # or renaming it and then running invokeai-configure again. """ logger = InvokeAILogger.getLogger() class DummyWidgetValue(Enum): zero = 0 true = True false = False # -------------------------------------------- def postscript(errors: None): if not any(errors): message = f""" ** INVOKEAI INSTALLATION SUCCESSFUL ** If you installed manually from source or with 'pip install': activate the virtual environment then run one of the following commands to start InvokeAI. Web UI: invokeai-web Command-line client: invokeai If you installed using an installation script, run: {config.root_path}/invoke.{"bat" if sys.platform == "win32" else "sh"} Add the '--help' argument to see all of the command-line switches available for use. """ else: message = ( "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n" ) for err in errors: message += f"\t - {err}\n" message += "Please check the logs above and correct any issues." print(message) # --------------------------------------------- def yes_or_no(prompt: str, default_yes=True): default = "y" if default_yes else "n" response = input(f"{prompt} [{default}] ") or default if default_yes: return response[0] not in ("n", "N") else: return response[0] in ("y", "Y") # --------------------------------------------- def HfLogin(access_token) -> str: """ Helper for logging in to Huggingface The stdout capture is needed to hide the irrelevant "git credential helper" warning """ capture = io.StringIO() sys.stdout = capture try: hf_hub_login(token=access_token, add_to_git_credential=False) sys.stdout = sys.__stdout__ except Exception as exc: sys.stdout = sys.__stdout__ print(exc) raise exc # ------------------------------------- class ProgressBar: def __init__(self, model_name="file"): self.pbar = None self.name = model_name def __call__(self, block_num, block_size, total_size): if not self.pbar: self.pbar = tqdm( desc=self.name, initial=0, unit="iB", unit_scale=True, unit_divisor=1000, total=total_size, ) self.pbar.update(block_size) # --------------------------------------------- def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"): try: logger.info(f"Installing {label} model file {model_url}...") if not os.path.exists(model_dest): os.makedirs(os.path.dirname(model_dest), exist_ok=True) request.urlretrieve(model_url, model_dest, ProgressBar(os.path.basename(model_dest))) logger.info("...downloaded successfully") else: logger.info("...exists") except Exception: logger.info("...download failed") logger.info(f"Error downloading {label} model") print(traceback.format_exc(), file=sys.stderr) def download_conversion_models(): target_dir = config.models_path / "core/convert" kwargs = dict() # for future use try: logger.info("Downloading core tokenizers and text encoders") # bert with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs) bert.save_pretrained(target_dir / "bert-base-uncased", safe_serialization=True) # sd-1 repo_id = "openai/clip-vit-large-patch14" hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / "clip-vit-large-patch14") hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / "clip-vit-large-patch14") # sd-2 repo_id = "stabilityai/stable-diffusion-2" pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs) pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "tokenizer", safe_serialization=True) pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs) pipeline.save_pretrained(target_dir / "stable-diffusion-2-clip" / "text_encoder", safe_serialization=True) # sd-xl - tokenizer_2 repo_id = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" _, model_name = repo_id.split("/") pipeline = CLIPTokenizer.from_pretrained(repo_id, **kwargs) pipeline.save_pretrained(target_dir / model_name, safe_serialization=True) pipeline = CLIPTextConfig.from_pretrained(repo_id, **kwargs) pipeline.save_pretrained(target_dir / model_name, safe_serialization=True) # VAE logger.info("Downloading stable diffusion VAE") vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", **kwargs) vae.save_pretrained(target_dir / "sd-vae-ft-mse", safe_serialization=True) # safety checking logger.info("Downloading safety checker") repo_id = "CompVis/stable-diffusion-safety-checker" pipeline = AutoFeatureExtractor.from_pretrained(repo_id, **kwargs) pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True) pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id, **kwargs) pipeline.save_pretrained(target_dir / "stable-diffusion-safety-checker", safe_serialization=True) except KeyboardInterrupt: raise except Exception as e: logger.error(str(e)) # --------------------------------------------- def download_realesrgan(): logger.info("Installing ESRGAN Upscaling models...") URLs = [ dict( url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth", dest="core/upscaling/realesrgan/RealESRGAN_x4plus.pth", description="RealESRGAN_x4plus.pth", ), dict( url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth", dest="core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth", description="RealESRGAN_x4plus_anime_6B.pth", ), dict( url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth", dest="core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth", description="ESRGAN_SRx4_DF2KOST_official.pth", ), dict( url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth", dest="core/upscaling/realesrgan/RealESRGAN_x2plus.pth", description="RealESRGAN_x2plus.pth", ), ] for model in URLs: download_with_progress_bar(model["url"], config.models_path / model["dest"], model["description"]) # --------------------------------------------- def download_support_models(): download_realesrgan() download_conversion_models() # ------------------------------------- def get_root(root: str = None) -> str: if root: return root elif os.environ.get("INVOKEAI_ROOT"): return os.environ.get("INVOKEAI_ROOT") else: return str(config.root_path) # ------------------------------------- class editOptsForm(CyclingForm, npyscreen.FormMultiPage): # for responsive resizing - disabled # FIX_MINIMUM_SIZE_WHEN_CREATED = False def create(self): program_opts = self.parentApp.program_opts old_opts = self.parentApp.invokeai_opts first_time = not (config.root_path / "invokeai.yaml").exists() access_token = HfFolder.get_token() window_width, window_height = get_terminal_size() label = """Configure startup settings. You can come back and change these later. Use ctrl-N and ctrl-P to move to the ext and

revious fields. Use cursor arrows to make a checkbox selection, and space to toggle. """ self.nextrely -= 1 for i in textwrap.wrap(label, width=window_width - 6): self.add_widget_intelligent( npyscreen.FixedText, value=i, editable=False, color="CONTROL", ) self.nextrely += 1 label = """HuggingFace access token (OPTIONAL) for automatic model downloads. See https://huggingface.co/settings/tokens.""" for line in textwrap.wrap(label, width=window_width - 6): self.add_widget_intelligent( npyscreen.FixedText, value=line, editable=False, color="CONTROL", ) self.hf_token = self.add_widget_intelligent( npyscreen.TitlePassword, name="Access Token (ctrl-shift-V pastes):", value=access_token, begin_entry_at=42, use_two_lines=False, scroll_exit=True, ) # old settings for defaults precision = old_opts.precision or ("float32" if program_opts.full_precision else "auto") device = old_opts.device attention_type = old_opts.attention_type attention_slice_size = old_opts.attention_slice_size self.nextrely += 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="Image Generation Options:", editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 2 self.generation_options = self.add_widget_intelligent( MultiSelectColumns, columns=3, values=GENERATION_OPT_CHOICES, value=[GENERATION_OPT_CHOICES.index(x) for x in GENERATION_OPT_CHOICES if getattr(old_opts, x)], relx=30, max_height=2, max_width=80, scroll_exit=True, ) self.add_widget_intelligent( npyscreen.TitleFixedText, name="Floating Point Precision:", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 2 self.precision = self.add_widget_intelligent( SingleSelectColumnsSimple, columns=len(PRECISION_CHOICES), name="Precision", values=PRECISION_CHOICES, value=PRECISION_CHOICES.index(precision), begin_entry_at=3, max_height=2, relx=30, max_width=56, scroll_exit=True, ) self.add_widget_intelligent( npyscreen.TitleFixedText, name="Generation Device:", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 2 self.device = self.add_widget_intelligent( SingleSelectColumnsSimple, columns=len(DEVICE_CHOICES), values=DEVICE_CHOICES, value=DEVICE_CHOICES.index(device), begin_entry_at=3, relx=30, max_height=2, max_width=60, scroll_exit=True, ) self.add_widget_intelligent( npyscreen.TitleFixedText, name="Attention Type:", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 2 self.attention_type = self.add_widget_intelligent( SingleSelectColumnsSimple, columns=len(ATTENTION_CHOICES), values=ATTENTION_CHOICES, value=ATTENTION_CHOICES.index(attention_type), begin_entry_at=3, max_height=2, relx=30, max_width=80, scroll_exit=True, ) self.attention_type.on_changed = self.show_hide_slice_sizes self.attention_slice_label = self.add_widget_intelligent( npyscreen.TitleFixedText, name="Attention Slice Size:", relx=5, editable=False, hidden=attention_type != "sliced", color="CONTROL", scroll_exit=True, ) self.nextrely -= 2 self.attention_slice_size = self.add_widget_intelligent( SingleSelectColumnsSimple, columns=len(ATTENTION_SLICE_CHOICES), values=ATTENTION_SLICE_CHOICES, value=ATTENTION_SLICE_CHOICES.index(attention_slice_size), relx=30, hidden=attention_type != "sliced", max_height=2, max_width=110, scroll_exit=True, ) self.add_widget_intelligent( npyscreen.TitleFixedText, name="Model RAM cache size (GB). Make this at least large enough to hold a single full model.", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 self.ram = self.add_widget_intelligent( npyscreen.Slider, value=clip(old_opts.ram_cache_size, range=(3.0, MAX_RAM), step=0.5), out_of=round(MAX_RAM), lowest=0.0, step=0.5, relx=8, scroll_exit=True, ) if HAS_CUDA: self.nextrely += 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="Model VRAM cache size (GB). Reserving a small amount of VRAM will modestly speed up the start of image generation.", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 self.vram = self.add_widget_intelligent( npyscreen.Slider, value=clip(old_opts.vram_cache_size, range=(0, MAX_VRAM), step=0.25), out_of=round(MAX_VRAM * 2) / 2, lowest=0.0, relx=8, step=0.25, scroll_exit=True, ) else: self.vram_cache_size = DummyWidgetValue.zero self.nextrely += 1 self.outdir = self.add_widget_intelligent( FileBox, name="Output directory for images ( autocompletes, ctrl-N advances):", value=str(default_output_dir()), select_dir=True, must_exist=False, use_two_lines=False, labelColor="GOOD", begin_entry_at=40, max_height=3, scroll_exit=True, ) self.autoimport_dirs = {} self.autoimport_dirs["autoimport_dir"] = self.add_widget_intelligent( FileBox, name="Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models", value=str(config.root_path / config.autoimport_dir), select_dir=True, must_exist=False, use_two_lines=False, labelColor="GOOD", begin_entry_at=32, max_height=3, scroll_exit=True, ) self.nextrely += 1 label = """BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSES LOCATED AT https://huggingface.co/spaces/CompVis/stable-diffusion-license and https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md """ for i in textwrap.wrap(label, width=window_width - 6): self.add_widget_intelligent( npyscreen.FixedText, value=i, editable=False, color="CONTROL", ) self.license_acceptance = self.add_widget_intelligent( npyscreen.Checkbox, name="I accept the CreativeML Responsible AI Licenses", value=not first_time, relx=2, scroll_exit=True, ) self.nextrely += 1 label = "DONE" if program_opts.skip_sd_weights or program_opts.default_only else "NEXT" self.ok_button = self.add_widget_intelligent( CenteredButtonPress, name=label, relx=(window_width - len(label)) // 2, when_pressed_function=self.on_ok, ) def show_hide_slice_sizes(self, value): show = ATTENTION_CHOICES[value[0]] == "sliced" self.attention_slice_label.hidden = not show self.attention_slice_size.hidden = not show def on_ok(self): options = self.marshall_arguments() if self.validate_field_values(options): self.parentApp.new_opts = options if hasattr(self.parentApp, "model_select"): self.parentApp.setNextForm("MODELS") else: self.parentApp.setNextForm(None) self.editing = False else: self.editing = True def validate_field_values(self, opt: Namespace) -> bool: bad_fields = [] if not opt.license_acceptance: bad_fields.append("Please accept the license terms before proceeding to model downloads") if not Path(opt.outdir).parent.exists(): bad_fields.append( f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory." ) if len(bad_fields) > 0: message = "The following problems were detected and must be corrected:\n" for problem in bad_fields: message += f"* {problem}\n" npyscreen.notify_confirm(message) return False else: return True def marshall_arguments(self): new_opts = Namespace() for attr in [ "ram", "vram", "outdir", ]: setattr(new_opts, attr, getattr(self, attr).value) for attr in self.autoimport_dirs: directory = Path(self.autoimport_dirs[attr].value) if directory.is_relative_to(config.root_path): directory = directory.relative_to(config.root_path) setattr(new_opts, attr, directory) new_opts.hf_token = self.hf_token.value new_opts.license_acceptance = self.license_acceptance.value new_opts.precision = PRECISION_CHOICES[self.precision.value[0]] new_opts.device = DEVICE_CHOICES[self.device.value[0]] new_opts.attention_type = ATTENTION_CHOICES[self.attention_type.value[0]] # some sort of bug in npyscreen? attention_slice_value = self.attention_slice_size.value if type(attention_slice_value) == list: attention_slice_value = attention_slice_value[0] new_opts.attention_slice_size = ATTENTION_SLICE_CHOICES[attention_slice_value] generation_options = [GENERATION_OPT_CHOICES[x] for x in self.generation_options.value] for v in GENERATION_OPT_CHOICES: setattr(new_opts, v, v in generation_options) return new_opts class EditOptApplication(npyscreen.NPSAppManaged): def __init__(self, program_opts: Namespace, invokeai_opts: Namespace): super().__init__() self.program_opts = program_opts self.invokeai_opts = invokeai_opts self.user_cancelled = False self.autoload_pending = True self.install_selections = default_user_selections(program_opts) def onStart(self): npyscreen.setTheme(npyscreen.Themes.DefaultTheme) self.options = self.addForm( "MAIN", editOptsForm, name="InvokeAI Startup Options", cycle_widgets=False, ) if not (self.program_opts.skip_sd_weights or self.program_opts.default_only): self.model_select = self.addForm( "MODELS", addModelsForm, name="Install Stable Diffusion Models", multipage=True, cycle_widgets=False, ) def new_opts(self): return self.options.marshall_arguments() def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Namespace: editApp = EditOptApplication(program_opts, invokeai_opts) editApp.run() return editApp.new_opts() def default_startup_options(init_file: Path) -> Namespace: opts = InvokeAIAppConfig.get_config() return opts def default_user_selections(program_opts: Namespace) -> InstallSelections: try: installer = ModelInstall(config) except omegaconf.errors.ConfigKeyError: logger.warning("Your models.yaml file is corrupt or out of date. Reinitializing") initialize_rootdir(config.root_path, True) installer = ModelInstall(config) models = installer.all_models() return InstallSelections( install_models=[models[installer.default_model()].path or models[installer.default_model()].repo_id] if program_opts.default_only else [models[x].path or models[x].repo_id for x in installer.recommended_models()] if program_opts.yes_to_all else list(), ) # ------------------------------------- def clip(value: float, range: tuple[float, float], step: float) -> float: minimum, maximum = range if value < minimum: value = minimum if value > maximum: value = maximum return round(value / step) * step # ------------------------------------- def initialize_rootdir(root: Path, yes_to_all: bool = False): logger.info("Initializing InvokeAI runtime directory") for name in ("models", "databases", "text-inversion-output", "text-inversion-training-data", "configs"): os.makedirs(os.path.join(root, name), exist_ok=True) for model_type in ModelType: Path(root, "autoimport", model_type.value).mkdir(parents=True, exist_ok=True) configs_src = Path(configs.__path__[0]) configs_dest = root / "configs" if not os.path.samefile(configs_src, configs_dest): shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True) dest = root / "models" for model_base in BaseModelType: for model_type in ModelType: path = dest / model_base.value / model_type.value path.mkdir(parents=True, exist_ok=True) path = dest / "core" path.mkdir(parents=True, exist_ok=True) def maybe_create_models_yaml(root: Path): models_yaml = root / "configs" / "models.yaml" if models_yaml.exists(): if OmegaConf.load(models_yaml).get("__metadata__"): # up to date return else: logger.info("Creating new models.yaml, original saved as models.yaml.orig") models_yaml.rename(models_yaml.parent / "models.yaml.orig") with open(models_yaml, "w") as yaml_file: yaml_file.write(yaml.dump({"__metadata__": {"version": "3.0.0"}})) # ------------------------------------- def run_console_ui(program_opts: Namespace, initfile: Path = None) -> (Namespace, Namespace): invokeai_opts = default_startup_options(initfile) invokeai_opts.root = program_opts.root if not set_min_terminal_size(MIN_COLS, MIN_LINES): raise WindowTooSmallException( "Could not increase terminal size. Try running again with a larger window or smaller font size." ) # the install-models application spawns a subprocess to install # models, and will crash unless this is set before running. import torch torch.multiprocessing.set_start_method("spawn") editApp = EditOptApplication(program_opts, invokeai_opts) editApp.run() if editApp.user_cancelled: return (None, None) else: return (editApp.new_opts, editApp.install_selections) # ------------------------------------- def write_opts(opts: Namespace, init_file: Path): """ Update the invokeai.yaml file with values from current settings. """ # this will load current settings new_config = InvokeAIAppConfig.get_config() new_config.root = config.root for key, value in opts.__dict__.items(): if hasattr(new_config, key): setattr(new_config, key, value) with open(init_file, "w", encoding="utf-8") as file: file.write(new_config.to_yaml()) if hasattr(opts, "hf_token") and opts.hf_token: HfLogin(opts.hf_token) # ------------------------------------- def default_output_dir() -> Path: return config.root_path / "outputs" # ------------------------------------- def write_default_options(program_opts: Namespace, initfile: Path): opt = default_startup_options(initfile) write_opts(opt, initfile) # ------------------------------------- # Here we bring in # the legacy Args object in order to parse # the old init file and write out the new # yaml format. def migrate_init_file(legacy_format: Path): old = legacy_parser.parse_args([f"@{str(legacy_format)}"]) new = InvokeAIAppConfig.get_config() fields = [x for x, y in InvokeAIAppConfig.__fields__.items() if y.field_info.extra.get("category") != "DEPRECATED"] for attr in fields: if hasattr(old, attr): try: setattr(new, attr, getattr(old, attr)) except ValidationError as e: print(f"* Ignoring incompatible value for field {attr}:\n {str(e)}") # a few places where the field names have changed and we have to # manually add in the new names/values new.xformers_enabled = old.xformers new.conf_path = old.conf new.root = legacy_format.parent.resolve() invokeai_yaml = legacy_format.parent / "invokeai.yaml" with open(invokeai_yaml, "w", encoding="utf-8") as outfile: outfile.write(new.to_yaml()) legacy_format.replace(legacy_format.parent / "invokeai.init.orig") # ------------------------------------- def migrate_models(root: Path): from invokeai.backend.install.migrate_to_3 import do_migrate do_migrate(root, root) def migrate_if_needed(opt: Namespace, root: Path) -> bool: # We check for to see if the runtime directory is correctly initialized. old_init_file = root / "invokeai.init" new_init_file = root / "invokeai.yaml" old_hub = root / "models/hub" migration_needed = (old_init_file.exists() and not new_init_file.exists()) and old_hub.exists() if migration_needed: if opt.yes_to_all or yes_or_no( f"{str(config.root_path)} appears to be a 2.3 format root directory. Convert to version 3.0?" ): logger.info("** Migrating invokeai.init to invokeai.yaml") migrate_init_file(old_init_file) config.parse_args(argv=[], conf=OmegaConf.load(new_init_file)) if old_hub.exists(): migrate_models(config.root_path) else: print("Cannot continue without conversion. Aborting.") return migration_needed # ------------------------------------- def main(): parser = argparse.ArgumentParser(description="InvokeAI model downloader") parser.add_argument( "--skip-sd-weights", dest="skip_sd_weights", action=argparse.BooleanOptionalAction, default=False, help="skip downloading the large Stable Diffusion weight files", ) parser.add_argument( "--skip-support-models", dest="skip_support_models", action=argparse.BooleanOptionalAction, default=False, help="skip downloading the support models", ) parser.add_argument( "--full-precision", dest="full_precision", action=argparse.BooleanOptionalAction, type=bool, default=False, help="use 32-bit weights instead of faster 16-bit weights", ) parser.add_argument( "--yes", "-y", dest="yes_to_all", action="store_true", help='answer "yes" to all prompts', ) parser.add_argument( "--default_only", action="store_true", help="when --yes specified, only install the default model", ) parser.add_argument( "--config_file", "-c", dest="config_file", type=str, default=None, help="path to configuration file to create", ) parser.add_argument( "--root_dir", dest="root", type=str, default=None, help="path to root of install directory", ) opt = parser.parse_args() invoke_args = [] if opt.root: invoke_args.extend(["--root", opt.root]) if opt.full_precision: invoke_args.extend(["--precision", "float32"]) config.parse_args(invoke_args) logger = InvokeAILogger().getLogger(config=config) errors = set() try: # if we do a root migration/upgrade, then we are keeping previous # configuration and we are done. if migrate_if_needed(opt, config.root_path): sys.exit(0) # run this unconditionally in case new directories need to be added initialize_rootdir(config.root_path, opt.yes_to_all) models_to_download = default_user_selections(opt) new_init_file = config.root_path / "invokeai.yaml" if opt.yes_to_all: write_default_options(opt, new_init_file) init_options = Namespace(precision="float32" if opt.full_precision else "float16") else: init_options, models_to_download = run_console_ui(opt, new_init_file) if init_options: write_opts(init_options, new_init_file) else: logger.info('\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n') sys.exit(0) if opt.skip_support_models: logger.info("Skipping support models at user's request") else: logger.info("Installing support models") download_support_models() if opt.skip_sd_weights: logger.warning("Skipping diffusion weights download per user request") elif models_to_download: process_and_execute(opt, models_to_download) postscript(errors=errors) if not opt.yes_to_all: input("Press any key to continue...") except WindowTooSmallException as e: logger.error(str(e)) except KeyboardInterrupt: print("\nGoodbye! Come back soon.") # ------------------------------------- if __name__ == "__main__": main()