import os import re import sys import shlex import traceback from ldm.invoke.globals import Globals from ldm.generate import Generate from ldm.invoke.prompt_parser import PromptParser from ldm.invoke.readline import get_completer, Completer from ldm.invoke.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata from ldm.invoke.image_util import make_grid from ldm.invoke.log import write_log from ldm.invoke.model_manager import ModelManager from pathlib import Path from argparse import Namespace import pyparsing import ldm.invoke # global used in multiple functions (fix) infile = None if sys.platform == 'darwin': os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" def main(): """Initialize command-line parsers and the diffusion model""" global infile opt = Args() args = opt.parse_args() if not args: sys.exit(-1) if args.laion400m: print('--laion400m flag has been deprecated. Please use --model laion400m instead.') sys.exit(-1) if args.weights: print('--weights argument has been deprecated. Please edit ./configs/models.yaml, and select the weights using --model instead.') sys.exit(-1) if args.max_loaded_models is not None: if args.max_loaded_models <= 0: print('--max_loaded_models must be >= 1; using 1') args.max_loaded_models = 1 # alert - setting a few globals here Globals.try_patchmatch = args.patchmatch Globals.always_use_cpu = args.always_use_cpu Globals.internet_available = args.internet_available and check_internet() Globals.disable_xformers = not args.xformers Globals.ckpt_convert = args.ckpt_convert print(f'>> Internet connectivity is {Globals.internet_available}') if not args.conf: if not os.path.exists(os.path.join(Globals.root,'configs','models.yaml')): report_model_error(opt, e) # print(f"\n** Error. The file {os.path.join(Globals.root,'configs','models.yaml')} could not be found.") # print('** Please check the location of your invokeai directory and use the --root_dir option to point to the correct path.') # print('** This script will now exit.') # sys.exit(-1) print(f'>> {ldm.invoke.__app_name__}, version {ldm.invoke.__version__}') print(f'>> InvokeAI runtime directory is "{Globals.root}"') # loading here to avoid long delays on startup from ldm.generate import Generate # these two lines prevent a horrible warning message from appearing # when the frozen CLIP tokenizer is imported import transformers transformers.logging.set_verbosity_error() # Loading Face Restoration and ESRGAN Modules gfpgan,codeformer,esrgan = load_face_restoration(opt) # normalize the config directory relative to root if not os.path.isabs(opt.conf): opt.conf = os.path.normpath(os.path.join(Globals.root,opt.conf)) if opt.embeddings: if not os.path.isabs(opt.embedding_path): embedding_path = os.path.normpath(os.path.join(Globals.root,opt.embedding_path)) else: embedding_path = opt.embedding_path else: embedding_path = None # migrate legacy models ModelManager.migrate_models() # load the infile as a list of lines if opt.infile: try: if os.path.isfile(opt.infile): infile = open(opt.infile, 'r', encoding='utf-8') elif opt.infile == '-': # stdin infile = sys.stdin else: raise FileNotFoundError(f'{opt.infile} not found.') except (FileNotFoundError, IOError) as e: print(f'{e}. Aborting.') sys.exit(-1) # creating a Generate object: try: gen = Generate( conf = opt.conf, model = opt.model, sampler_name = opt.sampler_name, embedding_path = embedding_path, full_precision = opt.full_precision, precision = opt.precision, gfpgan=gfpgan, codeformer=codeformer, esrgan=esrgan, free_gpu_mem=opt.free_gpu_mem, safety_checker=opt.safety_checker, max_loaded_models=opt.max_loaded_models, ) except (FileNotFoundError, TypeError, AssertionError) as e: report_model_error(opt,e) except (IOError, KeyError) as e: print(f'{e}. Aborting.') sys.exit(-1) if opt.seamless: print(">> changed to seamless tiling mode") # preload the model try: gen.load_model() except KeyError: pass except Exception as e: report_model_error(opt, e) # try to autoconvert new models # autoimport new .ckpt files if path := opt.autoconvert: gen.model_manager.autoconvert_weights( conf_path=opt.conf, weights_directory=path, ) # web server loops forever if opt.web or opt.gui: invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan) sys.exit(0) if not infile: print( "\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)" ) try: main_loop(gen, opt) except KeyboardInterrupt: print(f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}') except Exception: print(">> An error occurred:") traceback.print_exc() # TODO: main_loop() has gotten busy. Needs to be refactored. def main_loop(gen, opt): """prompt/read/execute loop""" global infile done = False doneAfterInFile = infile is not None path_filter = re.compile(r'[<>:"/\\|?*]') last_results = list() # The readline completer reads history from the .dream_history file located in the # output directory specified at the time of script launch. We do not currently support # changing the history file midstream when the output directory is changed. completer = get_completer(opt, models=gen.model_manager.list_models()) set_default_output_dir(opt, completer) if gen.model: add_embedding_terms(gen, completer) output_cntr = completer.get_current_history_length()+1 # os.pathconf is not available on Windows if hasattr(os, 'pathconf'): path_max = os.pathconf(opt.outdir, 'PC_PATH_MAX') name_max = os.pathconf(opt.outdir, 'PC_NAME_MAX') else: path_max = 260 name_max = 255 while not done: operation = 'generate' try: command = get_next_command(infile, gen.model_name) except EOFError: done = infile is None or doneAfterInFile infile = None continue # skip empty lines if not command.strip(): continue if command.startswith(('#', '//')): continue if len(command.strip()) == 1 and command.startswith('q'): done = True break if not command.startswith('!history'): completer.add_history(command) if command.startswith('!'): command, operation = do_command(command, gen, opt, completer) if operation is None: continue if opt.parse_cmd(command) is None: continue if opt.init_img: try: if not opt.prompt: oldargs = metadata_from_png(opt.init_img) opt.prompt = oldargs.prompt print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}') except (OSError, AttributeError, KeyError): pass if len(opt.prompt) == 0: opt.prompt = '' # width and height are set by model if not specified if not opt.width: opt.width = gen.width if not opt.height: opt.height = gen.height # retrieve previous value of init image if requested if opt.init_img is not None and re.match('^-\\d+$', opt.init_img): try: opt.init_img = last_results[int(opt.init_img)][0] print(f'>> Reusing previous image {opt.init_img}') except IndexError: print( f'>> No previous initial image at position {opt.init_img} found') opt.init_img = None continue # the outdir can change with each command, so we adjust it here set_default_output_dir(opt,completer) # try to relativize pathnames for attr in ('init_img','init_mask','init_color'): if getattr(opt,attr) and not os.path.exists(getattr(opt,attr)): basename = getattr(opt,attr) path = os.path.join(opt.outdir,basename) setattr(opt,attr,path) # retrieve previous value of seed if requested # Exception: for postprocess operations negative seed values # mean "discard the original seed and generate a new one" # (this is a non-obvious hack and needs to be reworked) if opt.seed is not None and opt.seed < 0 and operation != 'postprocess': try: opt.seed = last_results[opt.seed][1] print(f'>> Reusing previous seed {opt.seed}') except IndexError: print(f'>> No previous seed at position {opt.seed} found') opt.seed = None continue if opt.strength is None: opt.strength = 0.75 if opt.out_direction is None else 0.83 if opt.with_variations is not None: opt.with_variations = split_variations(opt.with_variations) if opt.prompt_as_dir and operation == 'generate': # sanitize the prompt to a valid folder name subdir = path_filter.sub('_', opt.prompt)[:name_max].rstrip(' .') # truncate path to maximum allowed length # 39 is the length of '######.##########.##########-##.png', plus two separators and a NUL subdir = subdir[:(path_max - 39 - len(os.path.abspath(opt.outdir)))] current_outdir = os.path.join(opt.outdir, subdir) print('Writing files to directory: "' + current_outdir + '"') # make sure the output directory exists if not os.path.exists(current_outdir): os.makedirs(current_outdir) else: if not os.path.exists(opt.outdir): os.makedirs(opt.outdir) current_outdir = opt.outdir # Here is where the images are actually generated! last_results = [] try: file_writer = PngWriter(current_outdir) results = [] # list of filename, prompt pairs grid_images = dict() # seed -> Image, only used if `opt.grid` prior_variations = opt.with_variations or [] prefix = file_writer.unique_prefix() step_callback = make_step_callback(gen, opt, prefix) if opt.save_intermediates > 0 else None def image_writer(image, seed, upscaled=False, first_seed=None, use_prefix=None, prompt_in=None, attention_maps_image=None): # note the seed is the seed of the current image # the first_seed is the original seed that noise is added to # when the -v switch is used to generate variations nonlocal prior_variations nonlocal prefix path = None if opt.grid: grid_images[seed] = image elif operation == 'mask': filename = f'{prefix}.{use_prefix}.{seed}.png' tm = opt.text_mask[0] th = opt.text_mask[1] if len(opt.text_mask)>1 else 0.5 formatted_dream_prompt = f'!mask {opt.input_file_path} -tm {tm} {th}' path = file_writer.save_image_and_prompt_to_png( image = image, dream_prompt = formatted_dream_prompt, metadata = {}, name = filename, compress_level = opt.png_compression, ) results.append([path, formatted_dream_prompt]) else: if use_prefix is not None: prefix = use_prefix postprocessed = upscaled if upscaled else operation=='postprocess' opt.prompt = gen.huggingface_concepts_library.replace_triggers_with_concepts(opt.prompt or prompt_in) # to avoid the problem of non-unique concept triggers filename, formatted_dream_prompt = prepare_image_metadata( opt, prefix, seed, operation, prior_variations, postprocessed, first_seed ) path = file_writer.save_image_and_prompt_to_png( image = image, dream_prompt = formatted_dream_prompt, metadata = metadata_dumps( opt, seeds = [seed if opt.variation_amount==0 and len(prior_variations)==0 else first_seed], model_hash = gen.model_hash, ), name = filename, compress_level = opt.png_compression, ) # update rfc metadata if operation == 'postprocess': tool = re.match('postprocess:(\w+)',opt.last_operation).groups()[0] add_postprocessing_to_metadata( opt, opt.input_file_path, filename, tool, formatted_dream_prompt, ) if (not postprocessed) or opt.save_original: # only append to results if we didn't overwrite an earlier output results.append([path, formatted_dream_prompt]) # so that the seed autocompletes (on linux|mac when -S or --seed specified if completer and operation == 'generate': completer.add_seed(seed) completer.add_seed(first_seed) last_results.append([path, seed]) if operation == 'generate': catch_ctrl_c = infile is None # if running interactively, we catch keyboard interrupts opt.last_operation='generate' try: gen.prompt2image( image_callback=image_writer, step_callback=step_callback, catch_interrupts=catch_ctrl_c, **vars(opt) ) except (PromptParser.ParsingException, pyparsing.ParseException) as e: print('** An error occurred while processing your prompt **') print(f'** {str(e)} **') elif operation == 'postprocess': print(f'>> fixing {opt.prompt}') opt.last_operation = do_postprocess(gen,opt,image_writer) elif operation == 'mask': print(f'>> generating masks from {opt.prompt}') do_textmask(gen, opt, image_writer) if opt.grid and len(grid_images) > 0: grid_img = make_grid(list(grid_images.values())) grid_seeds = list(grid_images.keys()) first_seed = last_results[0][1] filename = f'{prefix}.{first_seed}.png' formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,grid=True,iterations=len(grid_images)) formatted_dream_prompt += f' # {grid_seeds}' metadata = metadata_dumps( opt, seeds = grid_seeds, model_hash = gen.model_hash ) path = file_writer.save_image_and_prompt_to_png( image = grid_img, dream_prompt = formatted_dream_prompt, metadata = metadata, name = filename ) results = [[path, formatted_dream_prompt]] except AssertionError as e: print(e) continue except OSError as e: print(e) continue print('Outputs:') log_path = os.path.join(current_outdir, 'invoke_log') output_cntr = write_log(results, log_path ,('txt', 'md'), output_cntr) print() print(f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}') # TO DO: remove repetitive code and the awkward command.replace() trope # Just do a simple parse of the command! def do_command(command:str, gen, opt:Args, completer) -> tuple: global infile operation = 'generate' # default operation, alternative is 'postprocess' if command.startswith('!dream'): # in case a stored prompt still contains the !dream command command = command.replace('!dream ','',1) elif command.startswith('!fix'): command = command.replace('!fix ','',1) operation = 'postprocess' elif command.startswith('!mask'): command = command.replace('!mask ','',1) operation = 'mask' elif command.startswith('!switch'): model_name = command.replace('!switch ','',1) try: gen.set_model(model_name) add_embedding_terms(gen, completer) except KeyError as e: print(str(e)) except Exception as e: report_model_error(opt,e) completer.add_history(command) operation = None elif command.startswith('!models'): gen.model_manager.print_models() completer.add_history(command) operation = None elif command.startswith('!import'): path = shlex.split(command) if len(path) < 2: print('** please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1') else: import_model(path[1], gen, opt, completer) completer.add_history(command) operation = None elif command.startswith('!convert'): path = shlex.split(command) if len(path) < 2: print('** please provide the path to a .ckpt or .safetensors model') elif not os.path.exists(path[1]): print(f'** {path[1]}: model not found') else: optimize_model(path[1], gen, opt, completer) completer.add_history(command) operation = None elif command.startswith('!optimize'): path = shlex.split(command) if len(path) < 2: print('** please provide an installed model name') elif not path[1] in gen.model_manager.list_models(): print(f'** {path[1]}: model not found') else: optimize_model(path[1], gen, opt, completer) completer.add_history(command) operation = None elif command.startswith('!edit'): path = shlex.split(command) if len(path) < 2: print('** please provide the name of a model') else: edit_model(path[1], gen, opt, completer) completer.add_history(command) operation = None elif command.startswith('!del'): path = shlex.split(command) if len(path) < 2: print('** please provide the name of a model') else: del_config(path[1], gen, opt, completer) completer.add_history(command) operation = None elif command.startswith('!fetch'): file_path = command.replace('!fetch','',1).strip() retrieve_dream_command(opt,file_path,completer) completer.add_history(command) operation = None elif command.startswith('!replay'): file_path = command.replace('!replay','',1).strip() if infile is None and os.path.isfile(file_path): infile = open(file_path, 'r', encoding='utf-8') completer.add_history(command) operation = None elif command.startswith('!history'): completer.show_history() operation = None elif command.startswith('!search'): search_str = command.replace('!search','',1).strip() completer.show_history(search_str) operation = None elif command.startswith('!clear'): completer.clear_history() operation = None elif re.match('^!(\d+)',command): command_no = re.match('^!(\d+)',command).groups()[0] command = completer.get_line(int(command_no)) completer.set_line(command) operation = None else: # not a recognized command, so give the --help text command = '-h' return command, operation def set_default_output_dir(opt:Args, completer:Completer): ''' If opt.outdir is relative, we add the root directory to it normalize the outdir relative to root and make sure it exists. ''' if not os.path.isabs(opt.outdir): opt.outdir=os.path.normpath(os.path.join(Globals.root,opt.outdir)) if not os.path.exists(opt.outdir): os.makedirs(opt.outdir) completer.set_default_dir(opt.outdir) def import_model(model_path:str, gen, opt, completer): ''' model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path; or (3) a huggingface repository id ''' model_name = None if model_path.startswith(('http:','https:','ftp:')): model_name = import_ckpt_model(model_path, gen, opt, completer) elif os.path.exists(model_path) and model_path.endswith(('.ckpt','.safetensors')) and os.path.isfile(model_path): model_name = import_ckpt_model(model_path, gen, opt, completer) elif re.match('^[\w.+-]+/[\w.+-]+$',model_path): model_name = import_diffuser_model(model_path, gen, opt, completer) elif os.path.isdir(model_path): model_name = import_diffuser_model(Path(model_path), gen, opt, completer) else: print(f'** {model_path} is neither the path to a .ckpt file nor a diffusers repository id. Can\'t import.') if not model_name: return if not _verify_load(model_name, gen): print('** model failed to load. Discarding configuration entry') gen.model_manager.del_model(model_name) return if input('Make this the default model? [n] ').strip() in ('y','Y'): gen.model_manager.set_default_model(model_name) gen.model_manager.commit(opt.conf) completer.update_models(gen.model_manager.list_models()) print(f'>> {model_name} successfully installed') def import_diffuser_model(path_or_repo:str, gen, opt, completer)->str: manager = gen.model_manager default_name = Path(path_or_repo).stem default_description = f'Imported model {default_name}' model_name, model_description = _get_model_name_and_desc( manager, completer, model_name=default_name, model_description=default_description ) vae = None if input('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"? [n] ').strip() in ('y','Y'): vae = dict(repo_id='stabilityai/sd-vae-ft-mse') if not manager.import_diffuser_model( path_or_repo, model_name = model_name, vae = vae, description = model_description): print('** model failed to import') return None return model_name def import_ckpt_model(path_or_url:str, gen, opt, completer)->str: manager = gen.model_manager default_name = Path(path_or_url).stem default_description = f'Imported model {default_name}' model_name, model_description = _get_model_name_and_desc( manager, completer, model_name=default_name, model_description=default_description ) config_file = None default = Path(Globals.root,'configs/stable-diffusion/v1-inference.yaml') completer.complete_extensions(('.yaml','.yml')) completer.set_line(str(default)) done = False while not done: config_file = input('Configuration file for this model: ').strip() done = os.path.exists(config_file) completer.complete_extensions(('.ckpt','.safetensors')) vae = None default = Path(Globals.root,'models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt') completer.set_line(str(default)) done = False while not done: vae = input('VAE file for this model (leave blank for none): ').strip() or None done = (not vae) or os.path.exists(vae) completer.complete_extensions(None) if not manager.import_ckpt_model( path_or_url, config = config_file, vae = vae, model_name = model_name, model_description = model_description, commit_to_conf = opt.conf, ): print('** model failed to import') return None return model_name def _verify_load(model_name:str, gen)->bool: print('>> Verifying that new model loads...') current_model = gen.model_name if not gen.model_manager.get_model(model_name): return False do_switch = input('Keep model loaded? [y] ') if len(do_switch)==0 or do_switch[0] in ('y','Y'): gen.set_model(model_name) else: print('>> Restoring previous model') gen.set_model(current_model) return True def _get_model_name_and_desc(model_manager,completer,model_name:str='',model_description:str=''): model_name = _get_model_name(model_manager.list_models(),completer,model_name) completer.set_line(model_description) model_description = input(f'Description for this model [{model_description}]: ').strip() or model_description return model_name, model_description def optimize_model(model_name_or_path:str, gen, opt, completer): manager = gen.model_manager ckpt_path = None if (model_info := manager.model_info(model_name_or_path)): if 'weights' in model_info: ckpt_path = Path(model_info['weights']) model_name = model_name_or_path model_description = model_info['description'] else: print(f'** {model_name_or_path} is not a legacy .ckpt weights file') return elif os.path.exists(model_name_or_path): ckpt_path = Path(model_name_or_path) model_name,model_description = _get_model_name_and_desc( manager, completer, ckpt_path.stem, f'Converted model {ckpt_path.stem}' ) else: print(f'** {model_name_or_path} is neither an existing model nor the path to a .ckpt file') return if not ckpt_path.is_absolute(): ckpt_path = Path(Globals.root,ckpt_path) diffuser_path = Path(Globals.root, 'models',Globals.converted_ckpts_dir,model_name) if diffuser_path.exists(): print(f'** {model_name_or_path} is already optimized. Will not overwrite. If this is an error, please remove the directory {diffuser_path} and try again.') return vae = None if input('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"? [n] ').strip() in ('y','Y'): vae = dict(repo_id='stabilityai/sd-vae-ft-mse') new_config = gen.model_manager.convert_and_import( ckpt_path, diffuser_path, model_name=model_name, model_description=model_description, vae = vae, commit_to_conf=opt.conf, ) if not new_config: return completer.update_models(gen.model_manager.list_models()) if input(f'Load optimized model {model_name}? [y] ').strip() not in ('n','N'): gen.set_model(model_name) response = input(f'Delete the original .ckpt file at ({ckpt_path} ? [n] ') if response.startswith(('y','Y')): ckpt_path.unlink(missing_ok=True) print(f'{ckpt_path} deleted') def del_config(model_name:str, gen, opt, completer): current_model = gen.model_name if model_name == current_model: print("** Can't delete active model. !switch to another model first. **") return if model_name not in gen.model_manager.config: print(f"** Unknown model {model_name}") return if input(f'Remove {model_name} from the list of models known to InvokeAI? [y] ').strip().startswith(('n','N')): return delete_completely = input('Completely remove the model file or directory from disk? [n] ').startswith(('y','Y')) gen.model_manager.del_model(model_name,delete_files=delete_completely) gen.model_manager.commit(opt.conf) print(f'** {model_name} deleted') completer.update_models(gen.model_manager.list_models()) def edit_model(model_name:str, gen, opt, completer): manager = gen.model_manager if not (info := manager.model_info(model_name)): print(f'** Unknown model {model_name}') return print(f'\n>> Editing model {model_name} from configuration file {opt.conf}') new_name = _get_model_name(manager.list_models(),completer,model_name) for attribute in info.keys(): if type(info[attribute]) != str: continue if attribute == 'format': continue completer.set_line(info[attribute]) info[attribute] = input(f'{attribute}: ') or info[attribute] if new_name != model_name: manager.del_model(model_name) # this does the update manager.add_model(new_name, info, True) if input('Make this the default model? [n] ').startswith(('y','Y')): manager.set_default_model(new_name) manager.commit(opt.conf) completer.update_models(manager.list_models()) print('>> Model successfully updated') def _get_model_name(existing_names,completer,default_name:str='')->str: done = False completer.set_line(default_name) while not done: model_name = input(f'Short name for this model [{default_name}]: ').strip() if len(model_name)==0: model_name = default_name if not re.match('^[\w._+:/-]+$',model_name): print('** model name must contain only words, digits and the characters "._+:/-" **') elif model_name != default_name and model_name in existing_names: print(f'** the name {model_name} is already in use. Pick another.') else: done = True return model_name def do_textmask(gen, opt, callback): image_path = opt.prompt if not os.path.exists(image_path): image_path = os.path.join(opt.outdir,image_path) assert os.path.exists(image_path), '** "{opt.prompt}" not found. Please enter the name of an existing image file to mask **' assert opt.text_mask is not None and len(opt.text_mask) >= 1, '** Please provide a text mask with -tm **' opt.input_file_path = image_path tm = opt.text_mask[0] threshold = float(opt.text_mask[1]) if len(opt.text_mask) > 1 else 0.5 gen.apply_textmask( image_path = image_path, prompt = tm, threshold = threshold, callback = callback, ) def do_postprocess (gen, opt, callback): file_path = opt.prompt # treat the prompt as the file pathname if opt.new_prompt is not None: opt.prompt = opt.new_prompt else: opt.prompt = None if os.path.dirname(file_path) == '': #basename given file_path = os.path.join(opt.outdir,file_path) opt.input_file_path = file_path tool=None if opt.facetool_strength > 0: tool = opt.facetool elif opt.embiggen: tool = 'embiggen' elif opt.upscale: tool = 'upscale' elif opt.out_direction: tool = 'outpaint' elif opt.outcrop: tool = 'outcrop' opt.save_original = True # do not overwrite old image! opt.last_operation = f'postprocess:{tool}' try: gen.apply_postprocessor( image_path = file_path, tool = tool, facetool_strength = opt.facetool_strength, codeformer_fidelity = opt.codeformer_fidelity, save_original = opt.save_original, upscale = opt.upscale, out_direction = opt.out_direction, outcrop = opt.outcrop, callback = callback, opt = opt, ) except OSError: print(traceback.format_exc(), file=sys.stderr) print(f'** {file_path}: file could not be read') return except (KeyError, AttributeError): print(traceback.format_exc(), file=sys.stderr) return return opt.last_operation def add_postprocessing_to_metadata(opt,original_file,new_file,tool,command): original_file = original_file if os.path.exists(original_file) else os.path.join(opt.outdir,original_file) new_file = new_file if os.path.exists(new_file) else os.path.join(opt.outdir,new_file) try: meta = retrieve_metadata(original_file)['sd-metadata'] except AttributeError: try: meta = retrieve_metadata(new_file)['sd-metadata'] except AttributeError: meta = {} if 'image' not in meta: meta = metadata_dumps(opt,seeds=[opt.seed])['image'] meta['image'] = {} img_data = meta.get('image') pp = img_data.get('postprocessing',[]) or [] pp.append( { 'tool':tool, 'dream_command':command, } ) meta['image']['postprocessing'] = pp write_metadata(new_file,meta) def prepare_image_metadata( opt, prefix, seed, operation='generate', prior_variations=[], postprocessed=False, first_seed=None ): if postprocessed and opt.save_original: filename = choose_postprocess_name(opt,prefix,seed) else: wildcards = dict(opt.__dict__) wildcards['prefix'] = prefix wildcards['seed'] = seed try: filename = opt.fnformat.format(**wildcards) except KeyError as e: print(f'** The filename format contains an unknown key \'{e.args[0]}\'. Will use {{prefix}}.{{seed}}.png\' instead') filename = f'{prefix}.{seed}.png' except IndexError: print(f'** The filename format is broken or complete. Will use \'{{prefix}}.{{seed}}.png\' instead') filename = f'{prefix}.{seed}.png' if opt.variation_amount > 0: first_seed = first_seed or seed this_variation = [[seed, opt.variation_amount]] opt.with_variations = prior_variations + this_variation formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed) elif len(prior_variations) > 0: formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed) elif operation == 'postprocess': formatted_dream_prompt = '!fix '+opt.dream_prompt_str(seed=seed,prompt=opt.input_file_path) else: formatted_dream_prompt = opt.dream_prompt_str(seed=seed) return filename,formatted_dream_prompt def choose_postprocess_name(opt,prefix,seed) -> str: match = re.search('postprocess:(\w+)',opt.last_operation) if match: modifier = match.group(1) # will look like "gfpgan", "upscale", "outpaint" or "embiggen" else: modifier = 'postprocessed' counter = 0 filename = None available = False while not available: if counter == 0: filename = f'{prefix}.{seed}.{modifier}.png' else: filename = f'{prefix}.{seed}.{modifier}-{counter:02d}.png' available = not os.path.exists(os.path.join(opt.outdir,filename)) counter += 1 return filename def get_next_command(infile=None, model_name='no model') -> str: # command string if infile is None: command = input(f'({model_name}) invoke> ').strip() else: command = infile.readline() if not command: raise EOFError else: command = command.strip() if len(command)>0: print(f'#{command}') return command def invoke_ai_web_server_loop(gen: Generate, gfpgan, codeformer, esrgan): print('\n* --web was specified, starting web server...') from invokeai.backend import InvokeAIWebServer # Change working directory to the stable-diffusion directory os.chdir( os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) ) invoke_ai_web_server = InvokeAIWebServer(generate=gen, gfpgan=gfpgan, codeformer=codeformer, esrgan=esrgan) try: invoke_ai_web_server.run() except KeyboardInterrupt: pass def add_embedding_terms(gen,completer): ''' Called after setting the model, updates the autocompleter with any terms loaded by the embedding manager. ''' trigger_strings = gen.model.textual_inversion_manager.get_all_trigger_strings() completer.add_embedding_terms(trigger_strings) def split_variations(variations_string) -> list: # shotgun parsing, woo parts = [] broken = False # python doesn't have labeled loops... for part in variations_string.split(','): seed_and_weight = part.split(':') if len(seed_and_weight) != 2: print(f'** Could not parse with_variation part "{part}"') broken = True break try: seed = int(seed_and_weight[0]) weight = float(seed_and_weight[1]) except ValueError: print(f'** Could not parse with_variation part "{part}"') broken = True break parts.append([seed, weight]) if broken: return None elif len(parts) == 0: return None else: return parts def load_face_restoration(opt): try: gfpgan, codeformer, esrgan = None, None, None if opt.restore or opt.esrgan: from ldm.invoke.restoration import Restoration restoration = Restoration() if opt.restore: gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_model_path) else: print('>> Face restoration disabled') if opt.esrgan: esrgan = restoration.load_esrgan(opt.esrgan_bg_tile) else: print('>> Upscaling disabled') else: print('>> Face restoration and upscaling disabled') except (ModuleNotFoundError, ImportError): print(traceback.format_exc(), file=sys.stderr) print('>> You may need to install the ESRGAN and/or GFPGAN modules') return gfpgan,codeformer,esrgan def make_step_callback(gen, opt, prefix): destination = os.path.join(opt.outdir,'intermediates',prefix) os.makedirs(destination,exist_ok=True) print(f'>> Intermediate images will be written into {destination}') def callback(img, step): if step % opt.save_intermediates == 0 or step == opt.steps-1: filename = os.path.join(destination,f'{step:04}.png') image = gen.sample_to_image(img) image.save(filename,'PNG') return callback def retrieve_dream_command(opt,command,completer): ''' Given a full or partial path to a previously-generated image file, will retrieve and format the dream command used to generate the image, and pop it into the readline buffer (linux, Mac), or print out a comment for cut-and-paste (windows) Given a wildcard path to a folder with image png files, will retrieve and format the dream command used to generate the images, and save them to a file commands.txt for further processing ''' if len(command) == 0: return tokens = command.split() dir,basename = os.path.split(tokens[0]) if len(dir) == 0: path = os.path.join(opt.outdir,basename) else: path = tokens[0] if len(tokens) > 1: return write_commands(opt, path, tokens[1]) cmd = '' try: cmd = dream_cmd_from_png(path) except OSError: print(f'## {tokens[0]}: file could not be read') except (KeyError, AttributeError, IndexError): print(f'## {tokens[0]}: file has no metadata') except: print(f'## {tokens[0]}: file could not be processed') if len(cmd)>0: completer.set_line(cmd) def write_commands(opt, file_path:str, outfilepath:str): dir,basename = os.path.split(file_path) try: paths = sorted(list(Path(dir).glob(basename))) except ValueError: print(f'## "{basename}": unacceptable pattern') return commands = [] cmd = None for path in paths: try: cmd = dream_cmd_from_png(path) except (KeyError, AttributeError, IndexError): print(f'## {path}: file has no metadata') except: print(f'## {path}: file could not be processed') if cmd: commands.append(f'# {path}') commands.append(cmd) if len(commands)>0: dir,basename = os.path.split(outfilepath) if len(dir)==0: outfilepath = os.path.join(opt.outdir,basename) with open(outfilepath, 'w', encoding='utf-8') as f: f.write('\n'.join(commands)) print(f'>> File {outfilepath} with commands created') def report_model_error(opt:Namespace, e:Exception): print(f'** An error occurred while attempting to initialize the model: "{str(e)}"') print('** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models.') yes_to_all = os.environ.get('INVOKE_MODEL_RECONFIGURE') if yes_to_all: print('** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE') else: response = input('Do you want to run invokeai-configure script to select and/or reinstall models? [y] ') if response.startswith(('n', 'N')): return print('invokeai-configure is launching....\n') # Match arguments that were set on the CLI # only the arguments accepted by the configuration script are parsed root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else [] config = ["--config", opt.conf] if opt.conf is not None else [] previous_args = sys.argv sys.argv = [ 'invokeai-configure' ] sys.argv.extend(root_dir) sys.argv.extend(config) if yes_to_all is not None: for arg in yes_to_all.split(): sys.argv.append(arg) from ldm.invoke.config import configure_invokeai configure_invokeai.main() print('** InvokeAI will now restart') sys.argv = previous_args main() # would rather do a os.exec(), but doesn't exist? sys.exit(0) def check_internet()->bool: ''' Return true if the internet is reachable. It does this by pinging huggingface.co. ''' import urllib.request host = 'http://huggingface.co' try: urllib.request.urlopen(host,timeout=1) return True except: return False