# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) import copy import itertools from types import NoneType import uuid import networkx as nx from pydantic import BaseModel, validator from pydantic.fields import Field from typing import Any, Literal, Optional, Union, get_args, get_origin, get_type_hints, Annotated from .invocation_services import InvocationServices from ..invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext from ..invocations import * class EdgeConnection(BaseModel): node_id: str = Field(description="The id of the node for this edge connection") field: str = Field(description="The field for this connection") def __eq__(self, other): return (isinstance(other, self.__class__) and getattr(other, 'node_id', None) == self.node_id and getattr(other, 'field', None) == self.field) def __hash__(self): return hash(f'{self.node_id}.{self.field}') def get_output_field(node: BaseInvocation, field: str) -> Any: node_type = type(node) node_outputs = get_type_hints(node_type.get_output_type()) node_output_field = node_outputs.get(field) or None return node_output_field def get_input_field(node: BaseInvocation, field: str) -> Any: node_type = type(node) node_inputs = get_type_hints(node_type) node_input_field = node_inputs.get(field) or None return node_input_field def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool: if not from_type: return False if not to_type: return False # TODO: this is pretty forgiving on generic types. Clean that up (need to handle optionals and such) if from_type and to_type: # Ports are compatible if (from_type == to_type or from_type == Any or to_type == Any or Any in get_args(from_type) or Any in get_args(to_type)): return True if from_type in get_args(to_type): return True if to_type in get_args(from_type): return True if not issubclass(from_type, to_type): return False else: return False return True def are_connections_compatible( from_node: BaseInvocation, from_field: str, to_node: BaseInvocation, to_field: str) -> bool: """Determines if a connection between fields of two nodes is compatible.""" # TODO: handle iterators and collectors from_node_field = get_output_field(from_node, from_field) to_node_field = get_input_field(to_node, to_field) return are_connection_types_compatible(from_node_field, to_node_field) class NodeAlreadyInGraphError(Exception): pass class InvalidEdgeError(Exception): pass class NodeNotFoundError(Exception): pass class NodeAlreadyExecutedError(Exception): pass # TODO: Create and use an Empty output? class GraphInvocationOutput(BaseInvocationOutput): type: Literal['graph_output'] = 'graph_output' # TODO: Fill this out and move to invocations class GraphInvocation(BaseInvocation): type: Literal['graph'] = 'graph' # TODO: figure out how to create a default here graph: 'Graph' = Field(description="The graph to run", default=None) def invoke(self, context: InvocationContext) -> GraphInvocationOutput: """Invoke with provided services and return outputs.""" return GraphInvocationOutput() class IterateInvocationOutput(BaseInvocationOutput): """Used to connect iteration outputs. Will be expanded to a specific output.""" type: Literal['iterate_output'] = 'iterate_output' item: Any = Field(description="The item being iterated over") # TODO: Fill this out and move to invocations class IterateInvocation(BaseInvocation): type: Literal['iterate'] = 'iterate' collection: list[Any] = Field(description="The list of items to iterate over", default_factory=list) index: int = Field(description="The index, will be provided on executed iterators", default=0) def invoke(self, context: InvocationContext) -> IterateInvocationOutput: """Produces the outputs as values""" return IterateInvocationOutput(item = self.collection[self.index]) class CollectInvocationOutput(BaseInvocationOutput): type: Literal['collect_output'] = 'collect_output' collection: list[Any] = Field(description="The collection of input items") class CollectInvocation(BaseInvocation): """Collects values into a collection""" type: Literal['collect'] = 'collect' item: Any = Field(description="The item to collect (all inputs must be of the same type)", default=None) collection: list[Any] = Field(description="The collection, will be provided on execution", default_factory=list) def invoke(self, context: InvocationContext) -> CollectInvocationOutput: """Invoke with provided services and return outputs.""" return CollectInvocationOutput(collection = copy.copy(self.collection)) InvocationsUnion = Union[BaseInvocation.get_invocations()] InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()] class Graph(BaseModel): id: str = Field(description="The id of this graph", default_factory=uuid.uuid4) # TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field(description="The nodes in this graph", default_factory=dict) edges: list[tuple[EdgeConnection,EdgeConnection]] = Field(description="The connections between nodes and their fields in this graph", default_factory=list) def add_node(self, node: BaseInvocation) -> None: """Adds a node to a graph :raises NodeAlreadyInGraphError: the node is already present in the graph. """ if node.id in self.nodes: raise NodeAlreadyInGraphError() self.nodes[node.id] = node def _get_graph_and_node(self, node_path: str) -> tuple['Graph', str]: """Returns the graph and node id for a node path.""" # Materialized graphs may have nodes at the top level if node_path in self.nodes: return (self, node_path) node_id = node_path if '.' not in node_path else node_path[:node_path.index('.')] if node_id not in self.nodes: raise NodeNotFoundError(f'Node {node_path} not found in graph') node = self.nodes[node_id] if not isinstance(node, GraphInvocation): # There's more node path left but this isn't a graph - failure raise NodeNotFoundError('Node path terminated early at a non-graph node') return node.graph._get_graph_and_node(node_path[node_path.index('.')+1:]) def delete_node(self, node_path: str) -> None: """Deletes a node from a graph""" try: graph, node_id = self._get_graph_and_node(node_path) # Delete edges for this node input_edges = self._get_input_edges_and_graphs(node_path) output_edges = self._get_output_edges_and_graphs(node_path) for edge_graph,_,edge in input_edges: edge_graph.delete_edge(edge) for edge_graph,_,edge in output_edges: edge_graph.delete_edge(edge) del graph.nodes[node_id] except NodeNotFoundError: pass # Ignore, not doesn't exist (should this throw?) def add_edge(self, edge: tuple[EdgeConnection, EdgeConnection]) -> None: """Adds an edge to a graph :raises InvalidEdgeError: the provided edge is invalid. """ if self._is_edge_valid(edge) and edge not in self.edges: self.edges.append(edge) else: raise InvalidEdgeError() def delete_edge(self, edge: tuple[EdgeConnection, EdgeConnection]) -> None: """Deletes an edge from a graph""" try: self.edges.remove(edge) except KeyError: pass def is_valid(self) -> bool: """Validates the graph.""" # Validate all subgraphs for gn in (n for n in self.nodes.values() if isinstance(n, GraphInvocation)): if not gn.graph.is_valid(): return False # Validate all edges reference nodes in the graph node_ids = set([e[0].node_id for e in self.edges]+[e[1].node_id for e in self.edges]) if not all((self.has_node(node_id) for node_id in node_ids)): return False # Validate there are no cycles g = self.nx_graph_flat() if not nx.is_directed_acyclic_graph(g): return False # Validate all edge connections are valid if not all((are_connections_compatible( self.get_node(e[0].node_id), e[0].field, self.get_node(e[1].node_id), e[1].field ) for e in self.edges)): return False # Validate all iterators # TODO: may need to validate all iterators in subgraphs so edge connections in parent graphs will be available if not all((self._is_iterator_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, IterateInvocation))): return False # Validate all collectors # TODO: may need to validate all collectors in subgraphs so edge connections in parent graphs will be available if not all((self._is_collector_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, CollectInvocation))): return False return True def _is_edge_valid(self, edge: tuple[EdgeConnection, EdgeConnection]) -> bool: """Validates that a new edge doesn't create a cycle in the graph""" # Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly) try: from_node = self.get_node(edge[0].node_id) to_node = self.get_node(edge[1].node_id) except NodeNotFoundError: return False # Validate that an edge to this node+field doesn't already exist input_edges = self._get_input_edges(edge[1].node_id, edge[1].field) if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation): return False # Validate that no cycles would be created g = self.nx_graph_flat() g.add_edge(edge[0].node_id, edge[1].node_id) if not nx.is_directed_acyclic_graph(g): return False # Validate that the field types are compatible if not are_connections_compatible(from_node, edge[0].field, to_node, edge[1].field): return False # Validate if iterator output type matches iterator input type (if this edge results in both being set) if isinstance(to_node, IterateInvocation) and edge[1].field == 'collection': if not self._is_iterator_connection_valid(edge[1].node_id, new_input = edge[0]): return False # Validate if iterator input type matches output type (if this edge results in both being set) if isinstance(from_node, IterateInvocation) and edge[0].field == 'item': if not self._is_iterator_connection_valid(edge[0].node_id, new_output = edge[1]): return False # Validate if collector input type matches output type (if this edge results in both being set) if isinstance(to_node, CollectInvocation) and edge[1].field == 'item': if not self._is_collector_connection_valid(edge[1].node_id, new_input = edge[0]): return False # Validate if collector output type matches input type (if this edge results in both being set) if isinstance(from_node, CollectInvocation) and edge[0].field == 'collection': if not self._is_collector_connection_valid(edge[0].node_id, new_output = edge[1]): return False return True def has_node(self, node_path: str) -> bool: """Determines whether or not a node exists in the graph.""" try: n = self.get_node(node_path) if n is not None: return True else: return False except NodeNotFoundError: return False def get_node(self, node_path: str) -> InvocationsUnion: """Gets a node from the graph using a node path.""" # Materialized graphs may have nodes at the top level graph, node_id = self._get_graph_and_node(node_path) return graph.nodes[node_id] def _get_node_path(self, node_id: str, prefix: Optional[str] = None) -> str: return node_id if prefix is None or prefix == '' else f'{prefix}.{node_id}' def update_node(self, node_path: str, new_node: BaseInvocation) -> None: """Updates a node in the graph.""" graph, node_id = self._get_graph_and_node(node_path) node = graph.nodes[node_id] # Ensure the node type matches the new node if type(node) != type(new_node): raise TypeError(f'Node {node_path} is type {type(node)} but new node is type {type(new_node)}') # Ensure the new id is either the same or is not in the graph prefix = None if '.' not in node_path else node_path[:node_path.rindex('.')] new_path = self._get_node_path(new_node.id, prefix = prefix) if new_node.id != node.id and self.has_node(new_path): raise NodeAlreadyInGraphError('Node with id {new_node.id} already exists in graph') # Set the new node in the graph graph.nodes[new_node.id] = new_node if new_node.id != node.id: input_edges = self._get_input_edges_and_graphs(node_path) output_edges = self._get_output_edges_and_graphs(node_path) # Delete node and all edges graph.delete_node(node_path) # Create new edges for each input and output for graph,_,edge in input_edges: # Remove the graph prefix from the node path new_graph_node_path = new_node.id if '.' not in edge[1].node_id else f'{edge[1].node_id[edge[1].node_id.rindex("."):]}.{new_node.id}' graph.add_edge((edge[0], EdgeConnection(node_id = new_graph_node_path, field = edge[1].field))) for graph,_,edge in output_edges: # Remove the graph prefix from the node path new_graph_node_path = new_node.id if '.' not in edge[0].node_id else f'{edge[0].node_id[edge[0].node_id.rindex("."):]}.{new_node.id}' graph.add_edge((EdgeConnection(node_id = new_graph_node_path, field = edge[0].field), edge[1])) def _get_input_edges(self, node_path: str, field: Optional[str] = None) -> list[tuple[EdgeConnection,EdgeConnection]]: """Gets all input edges for a node""" edges = self._get_input_edges_and_graphs(node_path) # Filter to edges that match the field filtered_edges = (e for e in edges if field is None or e[2][1].field == field) # Create full node paths for each edge return [(EdgeConnection(node_id = self._get_node_path(e[0].node_id, prefix = prefix), field=e[0].field), EdgeConnection(node_id = self._get_node_path(e[1].node_id, prefix = prefix), field=e[1].field)) for _,prefix,e in filtered_edges] def _get_input_edges_and_graphs(self, node_path: str, prefix: Optional[str] = None) -> list[tuple['Graph', str, tuple[EdgeConnection,EdgeConnection]]]: """Gets all input edges for a node along with the graph they are in and the graph's path""" edges = list() # Return any input edges that appear in this graph edges.extend([(self, prefix, e) for e in self.edges if e[1].node_id == node_path]) node_id = node_path if '.' not in node_path else node_path[:node_path.index('.')] node = self.nodes[node_id] if isinstance(node, GraphInvocation): graph = node.graph graph_path = node.id if prefix is None or prefix == '' else self._get_node_path(node.id, prefix = prefix) graph_edges = graph._get_input_edges_and_graphs(node_path[(len(node_id)+1):], prefix=graph_path) edges.extend(graph_edges) return edges def _get_output_edges(self, node_path: str, field: str) -> list[tuple[EdgeConnection,EdgeConnection]]: """Gets all output edges for a node""" edges = self._get_output_edges_and_graphs(node_path) # Filter to edges that match the field filtered_edges = (e for e in edges if e[2][0].field == field) # Create full node paths for each edge return [(EdgeConnection(node_id = self._get_node_path(e[0].node_id, prefix = prefix), field=e[0].field), EdgeConnection(node_id = self._get_node_path(e[1].node_id, prefix = prefix), field=e[1].field)) for _,prefix,e in filtered_edges] def _get_output_edges_and_graphs(self, node_path: str, prefix: Optional[str] = None) -> list[tuple['Graph', str, tuple[EdgeConnection,EdgeConnection]]]: """Gets all output edges for a node along with the graph they are in and the graph's path""" edges = list() # Return any input edges that appear in this graph edges.extend([(self, prefix, e) for e in self.edges if e[0].node_id == node_path]) node_id = node_path if '.' not in node_path else node_path[:node_path.index('.')] node = self.nodes[node_id] if isinstance(node, GraphInvocation): graph = node.graph graph_path = node.id if prefix is None or prefix == '' else self._get_node_path(node.id, prefix = prefix) graph_edges = graph._get_output_edges_and_graphs(node_path[(len(node_id)+1):], prefix=graph_path) edges.extend(graph_edges) return edges def _is_iterator_connection_valid(self, node_path: str, new_input: Optional[EdgeConnection] = None, new_output: Optional[EdgeConnection] = None) -> bool: inputs = list([e[0] for e in self._get_input_edges(node_path, 'collection')]) outputs = list([e[1] for e in self._get_output_edges(node_path, 'item')]) if new_input is not None: inputs.append(new_input) if new_output is not None: outputs.append(new_output) # Only one input is allowed for iterators if len(inputs) > 1: return False # Get input and output fields (the fields linked to the iterator's input/output) input_field = get_output_field(self.get_node(inputs[0].node_id), inputs[0].field) output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs]) # Input type must be a list if get_origin(input_field) != list: return False # Validate that all outputs match the input type input_field_item_type = get_args(input_field)[0] if not all((are_connection_types_compatible(input_field_item_type, f) for f in output_fields)): return False return True def _is_collector_connection_valid(self, node_path: str, new_input: Optional[EdgeConnection] = None, new_output: Optional[EdgeConnection] = None) -> bool: inputs = list([e[0] for e in self._get_input_edges(node_path, 'item')]) outputs = list([e[1] for e in self._get_output_edges(node_path, 'collection')]) if new_input is not None: inputs.append(new_input) if new_output is not None: outputs.append(new_output) # Get input and output fields (the fields linked to the iterator's input/output) input_fields = list([get_output_field(self.get_node(e.node_id), e.field) for e in inputs]) output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs]) # Validate that all inputs are derived from or match a single type input_field_types = set([t for input_field in input_fields for t in ([input_field] if get_origin(input_field) == None else get_args(input_field)) if t != NoneType]) # Get unique types type_tree = nx.DiGraph() type_tree.add_nodes_from(input_field_types) type_tree.add_edges_from([e for e in itertools.permutations(input_field_types, 2) if issubclass(e[1], e[0])]) type_degrees = type_tree.in_degree(type_tree.nodes) if sum((t[1] == 0 for t in type_degrees)) != 1: return False # There is more than one root type # Get the input root type input_root_type = next(t[0] for t in type_degrees if t[1] == 0) # Verify that all outputs are lists if not all((get_origin(f) == list for f in output_fields)): return False # Verify that all outputs match the input type (are a base class or the same class) if not all((issubclass(input_root_type, get_args(f)[0]) for f in output_fields)): return False return True def nx_graph(self) -> nx.DiGraph: """Returns a NetworkX DiGraph representing the layout of this graph""" # TODO: Cache this? g = nx.DiGraph() g.add_nodes_from([n for n in self.nodes.keys()]) g.add_edges_from(set([(e[0].node_id, e[1].node_id) for e in self.edges])) return g def nx_graph_flat(self, nx_graph: Optional[nx.DiGraph] = None, prefix: Optional[str] = None) -> nx.DiGraph: """Returns a flattened NetworkX DiGraph, including all subgraphs (but not with iterations expanded)""" g = nx_graph or nx.DiGraph() # Add all nodes from this graph except graph/iteration nodes g.add_nodes_from([self._get_node_path(n.id, prefix) for n in self.nodes.values() if not isinstance(n, GraphInvocation) and not isinstance(n, IterateInvocation)]) # Expand graph nodes for sgn in (gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)): sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix)) # TODO: figure out if iteration nodes need to be expanded unique_edges = set([(e[0].node_id, e[1].node_id) for e in self.edges]) g.add_edges_from([(self._get_node_path(e[0], prefix), self._get_node_path(e[1], prefix)) for e in unique_edges]) return g class GraphExecutionState(BaseModel): """Tracks the state of a graph execution""" id: str = Field(description="The id of the execution state", default_factory=uuid.uuid4) # TODO: Store a reference to the graph instead of the actual graph? graph: Graph = Field(description="The graph being executed") # The graph of materialized nodes execution_graph: Graph = Field(description="The expanded graph of activated and executed nodes", default_factory=Graph) # Nodes that have been executed executed: set[str] = Field(description="The set of node ids that have been executed", default_factory=set) executed_history: list[str] = Field(description="The list of node ids that have been executed, in order of execution", default_factory=list) # The results of executed nodes results: dict[str, Annotated[InvocationOutputsUnion, Field(discriminator="type")]] = Field(description="The results of node executions", default_factory=dict) # Map of prepared/executed nodes to their original nodes prepared_source_mapping: dict[str, str] = Field(description="The map of prepared nodes to original graph nodes", default_factory=dict) # Map of original nodes to prepared nodes source_prepared_mapping: dict[str, set[str]] = Field(description="The map of original graph nodes to prepared nodes", default_factory=dict) def next(self) -> BaseInvocation | None: """Gets the next node ready to execute.""" # TODO: enable multiple nodes to execute simultaneously by tracking currently executing nodes # possibly with a timeout? # If there are no prepared nodes, prepare some nodes next_node = self._get_next_node() if next_node is None: prepared_id = self._prepare() # TODO: prepare multiple nodes at once? # while prepared_id is not None and not isinstance(self.graph.nodes[prepared_id], IterateInvocation): # prepared_id = self._prepare() if prepared_id is not None: next_node = self._get_next_node() # Get values from edges if next_node is not None: self._prepare_inputs(next_node) # If next is still none, there's no next node, return None return next_node def complete(self, node_id: str, output: InvocationOutputsUnion): """Marks a node as complete""" if node_id not in self.execution_graph.nodes: return # TODO: log error? # Mark node as executed self.executed.add(node_id) self.results[node_id] = output # Check if source node is complete (all prepared nodes are complete) source_node = self.prepared_source_mapping[node_id] prepared_nodes = self.source_prepared_mapping[source_node] if all([n in self.executed for n in prepared_nodes]): self.executed.add(source_node) self.executed_history.append(source_node) def is_complete(self) -> bool: """Returns true if the graph is complete""" return all((k in self.executed for k in self.graph.nodes)) def _create_execution_node(self, node_path: str, iteration_node_map: list[tuple[str, str]]) -> list[str]: """Prepares an iteration node and connects all edges, returning the new node id""" node = self.graph.get_node(node_path) self_iteration_count = -1 # If this is an iterator node, we must create a copy for each iteration if isinstance(node, IterateInvocation): # Get input collection edge (should error if there are no inputs) input_collection_edge = next(iter(self.graph._get_input_edges(node_path, 'collection'))) input_collection_prepared_node_id = next(n[1] for n in iteration_node_map if n[0] == input_collection_edge[0].node_id) input_collection_prepared_node_output = self.results[input_collection_prepared_node_id] input_collection = getattr(input_collection_prepared_node_output, input_collection_edge[0].field) self_iteration_count = len(input_collection) new_nodes = list() if self_iteration_count == 0: # TODO: should this raise a warning? It might just happen if an empty collection is input, and should be valid. return new_nodes # Get all input edges input_edges = self.graph._get_input_edges(node_path) # Create new edges for this iteration # For collect nodes, this may contain multiple inputs to the same field new_edges = list() for edge in input_edges: for input_node_id in (n[1] for n in iteration_node_map if n[0] == edge[0].node_id): new_edge = (EdgeConnection(node_id = input_node_id, field = edge[0].field), EdgeConnection(node_id = '', field = edge[1].field)) new_edges.append(new_edge) # Create a new node (or one for each iteration of this iterator) for i in (range(self_iteration_count) if self_iteration_count > 0 else [-1]): # Create a new node new_node = copy.deepcopy(node) # Create the node id (use a random uuid) new_node.id = str(uuid.uuid4()) # Set the iteration index for iteration invocations if isinstance(new_node, IterateInvocation): new_node.index = i # Add to execution graph self.execution_graph.add_node(new_node) self.prepared_source_mapping[new_node.id] = node_path if node_path not in self.source_prepared_mapping: self.source_prepared_mapping[node_path] = set() self.source_prepared_mapping[node_path].add(new_node.id) # Add new edges to execution graph for edge in new_edges: new_edge = (edge[0], EdgeConnection(node_id = new_node.id, field = edge[1].field)) self.execution_graph.add_edge(new_edge) new_nodes.append(new_node.id) return new_nodes def _iterator_graph(self) -> nx.DiGraph: """Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node""" g = self.graph.nx_graph() collectors = (n for n in self.graph.nodes if isinstance(self.graph.nodes[n], CollectInvocation)) for c in collectors: g.remove_edges_from(list(g.in_edges(c))) return g def _get_node_iterators(self, node_id: str) -> list[str]: """Gets iterators for a node""" g = self._iterator_graph() iterators = [n for n in nx.ancestors(g, node_id) if isinstance(self.graph.nodes[n], IterateInvocation)] return iterators def _prepare(self) -> Optional[str]: # Get flattened source graph g = self.graph.nx_graph_flat() # Find next unprepared node where all source nodes are executed sorted_nodes = nx.topological_sort(g) next_node_id = next((n for n in sorted_nodes if n not in self.source_prepared_mapping and all((e[0] in self.executed for e in g.in_edges(n)))), None) if next_node_id == None: return None # Get all parents of the next node next_node_parents = [e[0] for e in g.in_edges(next_node_id)] # Create execution nodes next_node = self.graph.get_node(next_node_id) new_node_ids = list() if isinstance(next_node, CollectInvocation): # Collapse all iterator input mappings and create a single execution node for the collect invocation all_iteration_mappings = list(itertools.chain(*(((s,p) for p in self.source_prepared_mapping[s]) for s in next_node_parents))) #all_iteration_mappings = list(set(itertools.chain(*prepared_parent_mappings))) create_results = self._create_execution_node(next_node_id, all_iteration_mappings) if create_results is not None: new_node_ids.extend(create_results) else: # Iterators or normal nodes # Get all iterator combinations for this node # Will produce a list of lists of prepared iterator nodes, from which results can be iterated iterator_nodes = self._get_node_iterators(next_node_id) iterator_nodes_prepared = [list(self.source_prepared_mapping[n]) for n in iterator_nodes] iterator_node_prepared_combinations = list(itertools.product(*iterator_nodes_prepared)) # Select the correct prepared parents for each iteration # For every iterator, the parent must either not be a child of that iterator, or must match the prepared iteration for that iterator # TODO: Handle a node mapping to none eg = self.execution_graph.nx_graph_flat() prepared_parent_mappings = [[(n,self._get_iteration_node(n, g, eg, it)) for n in next_node_parents] for it in iterator_node_prepared_combinations] # Create execution node for each iteration for iteration_mappings in prepared_parent_mappings: create_results = self._create_execution_node(next_node_id, iteration_mappings) if create_results is not None: new_node_ids.extend(create_results) return next(iter(new_node_ids), None) def _get_iteration_node(self, source_node_path: str, graph: nx.DiGraph, execution_graph: nx.DiGraph, prepared_iterator_nodes: list[str]) -> Optional[str]: """Gets the prepared version of the specified source node that matches every iteration specified""" prepared_nodes = self.source_prepared_mapping[source_node_path] if len(prepared_nodes) == 1: return next(iter(prepared_nodes)) # Check if the requested node is an iterator prepared_iterator = next((n for n in prepared_nodes if n in prepared_iterator_nodes), None) if prepared_iterator is not None: return prepared_iterator # Filter to only iterator nodes that are a parent of the specified node, in tuple format (prepared, source) iterator_source_node_mapping = [(n, self.prepared_source_mapping[n]) for n in prepared_iterator_nodes] parent_iterators = [itn for itn in iterator_source_node_mapping if nx.has_path(graph, itn[1], source_node_path)] return next((n for n in prepared_nodes if all(pit for pit in parent_iterators if nx.has_path(execution_graph, pit[0], n))), None) def _get_next_node(self) -> Optional[BaseInvocation]: g = self.execution_graph.nx_graph() sorted_nodes = nx.topological_sort(g) next_node = next((n for n in sorted_nodes if n not in self.executed), None) if next_node is None: return None return self.execution_graph.nodes[next_node] def _prepare_inputs(self, node: BaseInvocation): input_edges = [e for e in self.execution_graph.edges if e[1].node_id == node.id] if isinstance(node, CollectInvocation): output_collection = [getattr(self.results[edge[0].node_id], edge[0].field) for edge in input_edges if edge[1].field == 'item'] setattr(node, 'collection', output_collection) else: for edge in input_edges: output_value = getattr(self.results[edge[0].node_id], edge[0].field) setattr(node, edge[1].field, output_value) # TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state def _is_edge_valid(self, edge: tuple[EdgeConnection, EdgeConnection]) -> bool: if not self._is_edge_valid(edge): return False # Invalid if destination has already been prepared or executed if edge[1].node_id in self.source_prepared_mapping: return False # Otherwise, the edge is valid return True def _is_node_updatable(self, node_id: str) -> bool: # The node is updatable as long as it hasn't been prepared or executed return node_id not in self.source_prepared_mapping def add_node(self, node: BaseInvocation) -> None: self.graph.add_node(node) def update_node(self, node_path: str, new_node: BaseInvocation) -> None: if not self._is_node_updatable(node_path): raise NodeAlreadyExecutedError(f'Node {node_path} has already been prepared or executed and cannot be updated') self.graph.update_node(node_path, new_node) def delete_node(self, node_path: str) -> None: if not self._is_node_updatable(node_path): raise NodeAlreadyExecutedError(f'Node {node_path} has already been prepared or executed and cannot be deleted') self.graph.delete_node(node_path) def add_edge(self, edge: tuple[EdgeConnection, EdgeConnection]) -> None: if not self._is_node_updatable(edge[1].node_id): raise NodeAlreadyExecutedError(f'Destination node {edge[1].node_id} has already been prepared or executed and cannot be linked to') self.graph.add_edge(edge) def delete_edge(self, edge: tuple[EdgeConnection, EdgeConnection]) -> None: if not self._is_node_updatable(edge[1].node_id): raise NodeAlreadyExecutedError(f'Destination node {edge[1].node_id} has already been prepared or executed and cannot have a source edge deleted') self.graph.delete_edge(edge) GraphInvocation.update_forward_refs()