# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team '''Invokeai configuration system. Arguments and fields are taken from the pydantic definition of the model. Defaults can be set by creating a yaml configuration file that has a top-level key of "InvokeAI" and subheadings for each of the categories returned by `invokeai --help`. The file looks like this: [file: invokeai.yaml] InvokeAI: Paths: root: /home/lstein/invokeai-main conf_path: configs/models.yaml legacy_conf_dir: configs/stable-diffusion outdir: outputs embedding_dir: embeddings lora_dir: loras autoconvert_dir: null gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth Models: model: stable-diffusion-1.5 embeddings: true Memory/Performance: xformers_enabled: false sequential_guidance: false precision: float16 max_loaded_models: 4 always_use_cpu: false free_gpu_mem: false Features: nsfw_checker: true restore: true esrgan: true patchmatch: true internet_available: true log_tokenization: false Web Server: host: 127.0.0.1 port: 8081 allow_origins: [] allow_credentials: true allow_methods: - '*' allow_headers: - '*' The default name of the configuration file is `invokeai.yaml`, located in INVOKEAI_ROOT. You can replace supersede this by providing any OmegaConf dictionary object initialization time: omegaconf = OmegaConf.load('/tmp/init.yaml') conf = InvokeAIAppConfig(conf=omegaconf) By default, InvokeAIAppConfig will parse the contents of `sys.argv` at initialization time. You may pass a list of strings in the optional `argv` argument to use instead of the system argv: conf = InvokeAIAppConfig(arg=['--xformers_enabled']) It is also possible to set a value at initialization time. This value has highest priority. conf = InvokeAIAppConfig(xformers_enabled=True) Any setting can be overwritten by setting an environment variable of form: "INVOKEAI_", as in: export INVOKEAI_port=8080 Order of precedence (from highest): 1) initialization options 2) command line options 3) environment variable options 4) config file options 5) pydantic defaults Typical usage: from invokeai.app.services.config import InvokeAIAppConfig from invokeai.invocations.generate import TextToImageInvocation # get global configuration and print its nsfw_checker value conf = InvokeAIAppConfig() print(conf.nsfw_checker) # get the text2image invocation and print its step value text2image = TextToImageInvocation() print(text2image.steps) Computed properties: The InvokeAIAppConfig object has a series of properties that resolve paths relative to the runtime root directory. They each return a Path object: root_path - path to InvokeAI root output_path - path to default outputs directory model_conf_path - path to models.yaml conf - alias for the above embedding_path - path to the embeddings directory lora_path - path to the LoRA directory In most cases, you will want to create a single InvokeAIAppConfig object for the entire application. The get_invokeai_config() function does this: config = get_invokeai_config() print(config.root) # Subclassing If you wish to create a similar class, please subclass the `InvokeAISettings` class and define a Literal field named "type", which is set to the desired top-level name. For example, to create a "InvokeBatch" configuration, define like this: class InvokeBatch(InvokeAISettings): type: Literal["InvokeBatch"] = "InvokeBatch" node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources') cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources') This will now read and write from the "InvokeBatch" section of the config file, look for environment variables named INVOKEBATCH_*, and accept the command-line arguments `--node_count` and `--cpu_count`. The two configs are kept in separate sections of the config file: # invokeai.yaml InvokeBatch: Resources: node_count: 1 cpu_count: 8 InvokeAI: Paths: root: /home/lstein/invokeai-main conf_path: configs/models.yaml legacy_conf_dir: configs/stable-diffusion outdir: outputs ... ''' import argparse import pydoc import typing import os import sys from argparse import ArgumentParser from omegaconf import OmegaConf, DictConfig from pathlib import Path from pydantic import BaseSettings, Field, parse_obj_as from typing import Any, ClassVar, Dict, List, Literal, Type, Union, get_origin, get_type_hints, get_args INIT_FILE = Path('invokeai.yaml') LEGACY_INIT_FILE = Path('invokeai.init') # This global stores a singleton InvokeAIAppConfig configuration object global_config = None class InvokeAISettings(BaseSettings): ''' Runtime configuration settings in which default values are read from an omegaconf .yaml file. ''' initconf : ClassVar[DictConfig] = None argparse_groups : ClassVar[Dict] = {} def parse_args(self, argv: list=sys.argv[1:]): parser = self.get_parser() opt, _ = parser.parse_known_args(argv) for name in self.__fields__: if name not in self._excluded(): setattr(self, name, getattr(opt,name)) def to_yaml(self)->str: """ Return a YAML string representing our settings. This can be used as the contents of `invokeai.yaml` to restore settings later. """ cls = self.__class__ type = get_args(get_type_hints(cls)['type'])[0] field_dict = dict({type:dict()}) for name,field in self.__fields__.items(): if name in cls._excluded(): continue category = field.field_info.extra.get("category") or "Uncategorized" value = getattr(self,name) if category not in field_dict[type]: field_dict[type][category] = dict() # keep paths as strings to make it easier to read field_dict[type][category][name] = str(value) if isinstance(value,Path) else value conf = OmegaConf.create(field_dict) return OmegaConf.to_yaml(conf) @classmethod def add_parser_arguments(cls, parser): if 'type' in get_type_hints(cls): settings_stanza = get_args(get_type_hints(cls)['type'])[0] else: settings_stanza = "Uncategorized" env_prefix = cls.Config.env_prefix if hasattr(cls.Config,'env_prefix') else settings_stanza.upper() initconf = cls.initconf.get(settings_stanza) \ if cls.initconf and settings_stanza in cls.initconf \ else OmegaConf.create() # create an upcase version of the environment in # order to achieve case-insensitive environment # variables (the way Windows does) upcase_environ = dict() for key,value in os.environ.items(): upcase_environ[key.upper()] = value fields = cls.__fields__ cls.argparse_groups = {} for name, field in fields.items(): if name not in cls._excluded(): current_default = field.default category = field.field_info.extra.get("category","Uncategorized") env_name = env_prefix + '_' + name if category in initconf and name in initconf.get(category): field.default = initconf.get(category).get(name) if env_name.upper() in upcase_environ: field.default = upcase_environ[env_name.upper()] cls.add_field_argument(parser, name, field) field.default = current_default @classmethod def cmd_name(self, command_field: str='type')->str: hints = get_type_hints(self) if command_field in hints: return get_args(hints[command_field])[0] else: return 'Uncategorized' @classmethod def get_parser(cls)->ArgumentParser: parser = PagingArgumentParser( prog=cls.cmd_name(), description=cls.__doc__, ) cls.add_parser_arguments(parser) return parser @classmethod def add_subparser(cls, parser: argparse.ArgumentParser): parser.add_parser(cls.cmd_name(), help=cls.__doc__) @classmethod def _excluded(self)->List[str]: return ['type','initconf'] class Config: env_file_encoding = 'utf-8' arbitrary_types_allowed = True case_sensitive = True @classmethod def add_field_argument(cls, command_parser, name: str, field, default_override = None): field_type = get_type_hints(cls).get(name) default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory() if category := field.field_info.extra.get("category"): if category not in cls.argparse_groups: cls.argparse_groups[category] = command_parser.add_argument_group(category) argparse_group = cls.argparse_groups[category] else: argparse_group = command_parser if get_origin(field_type) == Literal: allowed_values = get_args(field.type_) allowed_types = set() for val in allowed_values: allowed_types.add(type(val)) allowed_types_list = list(allowed_types) field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore argparse_group.add_argument( f"--{name}", dest=name, type=field_type, default=default, choices=allowed_values, help=field.field_info.description, ) elif get_origin(field_type) == list: argparse_group.add_argument( f"--{name}", dest=name, nargs='*', type=field.type_, default=default, action=argparse.BooleanOptionalAction if field.type_==bool else 'store', help=field.field_info.description, ) else: argparse_group.add_argument( f"--{name}", dest=name, type=field.type_, default=default, action=argparse.BooleanOptionalAction if field.type_==bool else 'store', help=field.field_info.description, ) def _find_root()->Path: if os.environ.get("INVOKEAI_ROOT"): root = Path(os.environ.get("INVOKEAI_ROOT")).resolve() elif ( os.environ.get("VIRTUAL_ENV") and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists() or Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists() ) ): root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve() else: root = Path("~/invokeai").expanduser().resolve() return root class InvokeAIAppConfig(InvokeAISettings): ''' Generate images using Stable Diffusion. Use "invokeai" to launch the command-line client (recommended for experts only), or "invokeai-web" to launch the web server. Global options can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by setting environment variables INVOKEAI_. ''' #fmt: off type: Literal["InvokeAI"] = "InvokeAI" host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server') port : int = Field(default=9090, description="Port to bind to", category='Web Server') allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server') allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server') allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server') allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server') esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features') internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features') log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features') nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features') patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features') restore : bool = Field(default=True, description="Enable/disable face restoration code", category='Features') always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance') free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance') max_loaded_models : int = Field(default=2, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance') precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance') sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance') xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance') tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance') root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths') autoconvert_dir : Path = Field(default=None, description='Path to a directory of ckpt files to be converted into diffusers and imported on startup.', category='Paths') conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths') embedding_dir : Path = Field(default='embeddings', description='Path to InvokeAI textual inversion aembeddings directory', category='Paths') gfpgan_model_dir : Path = Field(default="./models/gfpgan/GFPGANv1.4.pth", description='Path to GFPGAN models directory.', category='Paths') legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths') lora_dir : Path = Field(default='loras', description='Path to InvokeAI LoRA model directory', category='Paths') outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths') from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths') use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths') model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models') embeddings : bool = Field(default=True, description='Load contents of embeddings directory', category='Models') #fmt: on def __init__(self, conf: DictConfig = None, argv: List[str]=None, **kwargs): ''' Initialize InvokeAIAppconfig. :param conf: alternate Omegaconf dictionary object :param argv: aternate sys.argv list :param **kwargs: attributes to initialize with ''' super().__init__(**kwargs) # Set the runtime root directory. We parse command-line switches here # in order to pick up the --root_dir option. self.parse_args(argv) if conf is None: try: conf = OmegaConf.load(self.root_dir / INIT_FILE) except: pass InvokeAISettings.initconf = conf # parse args again in order to pick up settings in configuration file self.parse_args(argv) # restore initialization values hints = get_type_hints(self) for k in kwargs: setattr(self,k,parse_obj_as(hints[k],kwargs[k])) @property def root_path(self)->Path: ''' Path to the runtime root directory ''' if self.root: return Path(self.root).expanduser() else: return self.find_root() @property def root_dir(self)->Path: ''' Alias for above. ''' return self.root_path def _resolve(self,partial_path:Path)->Path: return (self.root_path / partial_path).resolve() @property def output_path(self)->Path: ''' Path to defaults outputs directory. ''' return self._resolve(self.outdir) @property def model_conf_path(self)->Path: ''' Path to models configuration file. ''' return self._resolve(self.conf_path) @property def legacy_conf_path(self)->Path: ''' Path to directory of legacy configuration files (e.g. v1-inference.yaml) ''' return self._resolve(self.legacy_conf_dir) @property def cache_dir(self)->Path: ''' Path to the global cache directory for HuggingFace hub-managed models ''' return self.models_dir / "hub" @property def models_dir(self)->Path: ''' Path to the models directory ''' return self._resolve("models") @property def converted_ckpts_dir(self)->Path: ''' Path to the converted models ''' return self._resolve("models/converted_ckpts") @property def embedding_path(self)->Path: ''' Path to the textual inversion embeddings directory. ''' return self._resolve(self.embedding_dir) if self.embedding_dir else None @property def lora_path(self)->Path: ''' Path to the LoRA models directory. ''' return self._resolve(self.lora_dir) if self.lora_dir else None @property def autoconvert_path(self)->Path: ''' Path to the directory containing models to be imported automatically at startup. ''' return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None @property def gfpgan_model_path(self)->Path: ''' Path to the GFPGAN model. ''' return self._resolve(self.gfpgan_model_dir) if self.gfpgan_model_dir else None # the following methods support legacy calls leftover from the Globals era @property def full_precision(self)->bool: """Return true if precision set to float32""" return self.precision=='float32' @property def disable_xformers(self)->bool: """Return true if xformers_enabled is false""" return not self.xformers_enabled @property def try_patchmatch(self)->bool: """Return true if patchmatch true""" return self.patchmatch @staticmethod def find_root()->Path: ''' Choose the runtime root directory when not specified on command line or init file. ''' return _find_root() class PagingArgumentParser(argparse.ArgumentParser): ''' A custom ArgumentParser that uses pydoc to page its output. It also supports reading defaults from an init file. ''' def print_help(self, file=None): text = self.format_help() pydoc.pager(text) def get_invokeai_config(cls:Type[InvokeAISettings]=InvokeAIAppConfig,**kwargs)->InvokeAIAppConfig: ''' This returns a singleton InvokeAIAppConfig configuration object. ''' global global_config if global_config is None or type(global_config)!=cls: global_config = cls(**kwargs) return global_config