# Fixtures to support testing of the model_manager v2 installer, metadata and record store import os import shutil from pathlib import Path import pytest from requests.sessions import Session from requests_testadapter import TestAdapter, TestSession from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.download import DownloadQueueService, DownloadQueueServiceBase from invokeai.app.services.model_install import ModelInstallService, ModelInstallServiceBase from invokeai.app.services.model_load import ModelLoadService, ModelLoadServiceBase from invokeai.app.services.model_manager import ModelManagerService, ModelManagerServiceBase from invokeai.app.services.model_records import ModelRecordServiceBase, ModelRecordServiceSQL from invokeai.backend.model_manager.config import ( BaseModelType, LoRADiffusersConfig, MainCheckpointConfig, MainDiffusersConfig, ModelFormat, ModelSourceType, ModelType, ModelVariantType, VAEDiffusersConfig, ) from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache from invokeai.backend.util.logging import InvokeAILogger from tests.backend.model_manager.model_metadata.metadata_examples import ( HFTestLoraMetadata, RepoCivitaiModelMetadata1, RepoCivitaiVersionMetadata1, RepoHFMetadata1, RepoHFMetadata1_nofp16, RepoHFModelJson1, ) from tests.fixtures.sqlite_database import create_mock_sqlite_database from tests.test_nodes import TestEventService # Create a temporary directory using the contents of `./data/invokeai_root` as the template @pytest.fixture def mm2_root_dir(tmp_path_factory) -> Path: root_template = Path(__file__).resolve().parent / "data" / "invokeai_root" temp_dir: Path = tmp_path_factory.mktemp("data") / "invokeai_root" shutil.copytree(root_template, temp_dir) return temp_dir @pytest.fixture def mm2_model_files(tmp_path_factory) -> Path: root_template = Path(__file__).resolve().parent / "data" / "test_files" temp_dir: Path = tmp_path_factory.mktemp("data") / "test_files" shutil.copytree(root_template, temp_dir) return temp_dir @pytest.fixture def embedding_file(mm2_model_files: Path) -> Path: return mm2_model_files / "test_embedding.safetensors" @pytest.fixture def diffusers_dir(mm2_model_files: Path) -> Path: return mm2_model_files / "test-diffusers-main" @pytest.fixture def mm2_app_config(mm2_root_dir: Path) -> InvokeAIAppConfig: app_config = InvokeAIAppConfig(models_dir=mm2_root_dir / "models", log_level="info") app_config._root = mm2_root_dir return app_config @pytest.fixture def mm2_download_queue(mm2_session: Session) -> DownloadQueueServiceBase: download_queue = DownloadQueueService(requests_session=mm2_session) download_queue.start() yield download_queue download_queue.stop() @pytest.fixture def mm2_loader(mm2_app_config: InvokeAIAppConfig, mm2_record_store: ModelRecordServiceBase) -> ModelLoadServiceBase: ram_cache = ModelCache( logger=InvokeAILogger.get_logger(), max_cache_size=mm2_app_config.ram, max_vram_cache_size=mm2_app_config.vram, ) convert_cache = ModelConvertCache(mm2_app_config.convert_cache_path) return ModelLoadService( app_config=mm2_app_config, ram_cache=ram_cache, convert_cache=convert_cache, ) @pytest.fixture def mm2_installer( mm2_app_config: InvokeAIAppConfig, mm2_download_queue: DownloadQueueServiceBase, mm2_session: Session, ) -> ModelInstallServiceBase: logger = InvokeAILogger.get_logger() db = create_mock_sqlite_database(mm2_app_config, logger) events = TestEventService() store = ModelRecordServiceSQL(db) installer = ModelInstallService( app_config=mm2_app_config, record_store=store, download_queue=mm2_download_queue, event_bus=events, session=mm2_session, ) installer.start() yield installer installer.stop() @pytest.fixture def mm2_record_store(mm2_app_config: InvokeAIAppConfig) -> ModelRecordServiceBase: logger = InvokeAILogger.get_logger(config=mm2_app_config) db = create_mock_sqlite_database(mm2_app_config, logger) store = ModelRecordServiceSQL(db) # add five simple config records to the database config1 = VAEDiffusersConfig( key="test_config_1", path="/tmp/foo1", format=ModelFormat.Diffusers, name="test2", base=BaseModelType.StableDiffusion2, type=ModelType.VAE, hash="111222333444", source="stabilityai/sdxl-vae", source_type=ModelSourceType.HFRepoID, ) config2 = MainCheckpointConfig( key="test_config_2", path="/tmp/foo2.ckpt", name="model1", format=ModelFormat.Checkpoint, base=BaseModelType.StableDiffusion1, type=ModelType.Main, config_path="/tmp/foo.yaml", variant=ModelVariantType.Normal, hash="111222333444", source="https://civitai.com/models/206883/split", source_type=ModelSourceType.Url, ) config3 = MainDiffusersConfig( key="test_config_3", path="/tmp/foo3", format=ModelFormat.Diffusers, name="test3", base=BaseModelType.StableDiffusionXL, type=ModelType.Main, hash="111222333444", source="author3/model3", description="This is test 3", source_type=ModelSourceType.HFRepoID, ) config4 = LoRADiffusersConfig( key="test_config_4", path="/tmp/foo4", format=ModelFormat.Diffusers, name="test4", base=BaseModelType.StableDiffusionXL, type=ModelType.LoRA, hash="111222333444", source="author4/model4", source_type=ModelSourceType.HFRepoID, ) config5 = LoRADiffusersConfig( key="test_config_5", path="/tmp/foo5", format=ModelFormat.Diffusers, name="test5", base=BaseModelType.StableDiffusion1, type=ModelType.LoRA, hash="111222333444", source="author4/model5", source_type=ModelSourceType.HFRepoID, ) store.add_model(config1) store.add_model(config2) store.add_model(config3) store.add_model(config4) store.add_model(config5) return store @pytest.fixture def mm2_model_manager( mm2_record_store: ModelRecordServiceBase, mm2_installer: ModelInstallServiceBase, mm2_loader: ModelLoadServiceBase ) -> ModelManagerServiceBase: return ModelManagerService(store=mm2_record_store, install=mm2_installer, load=mm2_loader) @pytest.fixture def mm2_session(embedding_file: Path, diffusers_dir: Path) -> Session: """This fixtures defines a series of mock URLs for testing download and installation.""" sess: Session = TestSession() sess.mount( "https://test.com/missing_model.safetensors", TestAdapter( b"missing", status=404, ), ) sess.mount( "https://huggingface.co/api/models/stabilityai/sdxl-turbo", TestAdapter( RepoHFMetadata1, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(RepoHFMetadata1)}, ), ) sess.mount( "https://huggingface.co/api/models/stabilityai/sdxl-turbo-nofp16", TestAdapter( RepoHFMetadata1_nofp16, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(RepoHFMetadata1_nofp16)}, ), ) sess.mount( "https://civitai.com/api/v1/model-versions/242807", TestAdapter( RepoCivitaiVersionMetadata1, headers={ "Content-Length": len(RepoCivitaiVersionMetadata1), }, ), ) sess.mount( "https://civitai.com/api/v1/models/215485", TestAdapter( RepoCivitaiModelMetadata1, headers={ "Content-Length": len(RepoCivitaiModelMetadata1), }, ), ) sess.mount( "https://huggingface.co/stabilityai/sdxl-turbo/resolve/main/model_index.json", TestAdapter( RepoHFModelJson1, headers={ "Content-Length": len(RepoHFModelJson1), }, ), ) with open(embedding_file, "rb") as f: data = f.read() # file is small - just 15K sess.mount( "https://www.test.foo/download/test_embedding.safetensors", TestAdapter(data, headers={"Content-Type": "application/octet-stream", "Content-Length": len(data)}), ) sess.mount( "https://huggingface.co/api/models/stabilityai/sdxl-turbo", TestAdapter( RepoHFMetadata1, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(RepoHFMetadata1)}, ), ) sess.mount( "https://huggingface.co/api/models/InvokeAI-test/textual_inversion_tests?blobs=True", TestAdapter( HFTestLoraMetadata, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(HFTestLoraMetadata)}, ), ) sess.mount( "https://huggingface.co/InvokeAI-test/textual_inversion_tests/resolve/main/learned_embeds-steps-1000.safetensors", TestAdapter( data, headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(data)}, ), ) for root, _, files in os.walk(diffusers_dir): for name in files: path = Path(root, name) url_base = path.relative_to(diffusers_dir).as_posix() url = f"https://huggingface.co/stabilityai/sdxl-turbo/resolve/main/{url_base}" with open(path, "rb") as f: data = f.read() sess.mount( url, TestAdapter( data, headers={ "Content-Type": "application/json; charset=utf-8", "Content-Length": len(data), }, ), ) return sess