''' invokeai.backend.generator.txt2img inherits from invokeai.backend.generator ''' import PIL.Image import torch from .base import Generator from .diffusers_pipeline import StableDiffusionGeneratorPipeline, ConditioningData from ..ldm.models import PostprocessingSettings class Txt2Img(Generator): def __init__(self, model, precision): super().__init__(model, precision) @torch.no_grad() def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta, conditioning,width,height,step_callback=None,threshold=0.0,warmup=0.2,perlin=0.0, h_symmetry_time_pct=None,v_symmetry_time_pct=None,attention_maps_callback=None, **kwargs): """ Returns a function returning an image derived from the prompt and the initial image Return value depends on the seed at the time you call it kwargs are 'width' and 'height' """ self.perlin = perlin # noinspection PyTypeChecker pipeline: StableDiffusionGeneratorPipeline = self.model pipeline.scheduler = sampler uc, c, extra_conditioning_info = conditioning conditioning_data = ( ConditioningData( uc, c, cfg_scale, extra_conditioning_info, postprocessing_settings=PostprocessingSettings( threshold=threshold, warmup=warmup, h_symmetry_time_pct=h_symmetry_time_pct, v_symmetry_time_pct=v_symmetry_time_pct ) ).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)) def make_image(x_T) -> PIL.Image.Image: pipeline_output = pipeline.image_from_embeddings( latents=torch.zeros_like(x_T,dtype=self.torch_dtype()), noise=x_T, num_inference_steps=steps, conditioning_data=conditioning_data, callback=step_callback, ) if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None: attention_maps_callback(pipeline_output.attention_map_saver) return pipeline.numpy_to_pil(pipeline_output.images)[0] return make_image