import os import numpy as np import PIL from PIL import Image from torch.utils.data import Dataset from torchvision import transforms class LSUNBase(Dataset): def __init__( self, txt_file, data_root, size=None, interpolation="bicubic", flip_p=0.5, ): self.data_paths = txt_file self.data_root = data_root with open(self.data_paths, "r") as f: self.image_paths = f.read().splitlines() self._length = len(self.image_paths) self.labels = { "relative_file_path_": [l for l in self.image_paths], "file_path_": [os.path.join(self.data_root, l) for l in self.image_paths], } self.size = size self.interpolation = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, }[interpolation] self.flip = transforms.RandomHorizontalFlip(p=flip_p) def __len__(self): return self._length def __getitem__(self, i): example = dict((k, self.labels[k][i]) for k in self.labels) image = Image.open(example["file_path_"]) if not image.mode == "RGB": image = image.convert("RGB") # default to score-sde preprocessing img = np.array(image).astype(np.uint8) crop = min(img.shape[0], img.shape[1]) ( h, w, ) = ( img.shape[0], img.shape[1], ) img = img[ (h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2, ] image = Image.fromarray(img) if self.size is not None: image = image.resize((self.size, self.size), resample=self.interpolation) image = self.flip(image) image = np.array(image).astype(np.uint8) example["image"] = (image / 127.5 - 1.0).astype(np.float32) return example class LSUNChurchesTrain(LSUNBase): def __init__(self, **kwargs): super().__init__( txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs, ) class LSUNChurchesValidation(LSUNBase): def __init__(self, flip_p=0.0, **kwargs): super().__init__( txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches", flip_p=flip_p, **kwargs, ) class LSUNBedroomsTrain(LSUNBase): def __init__(self, **kwargs): super().__init__( txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs, ) class LSUNBedroomsValidation(LSUNBase): def __init__(self, flip_p=0.0, **kwargs): super().__init__( txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms", flip_p=flip_p, **kwargs, ) class LSUNCatsTrain(LSUNBase): def __init__(self, **kwargs): super().__init__( txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs ) class LSUNCatsValidation(LSUNBase): def __init__(self, flip_p=0.0, **kwargs): super().__init__( txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats", flip_p=flip_p, **kwargs, )