#!/usr/bin/env python # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Before running stable-diffusion on an internet-isolated machine, # run this script from one with internet connectivity. The # two machines must share a common .cache directory. # # Coauthor: Kevin Turner http://github.com/keturn # print("Loading Python libraries...\n") import argparse import io import os import re import shutil import sys import traceback import warnings from pathlib import Path from tempfile import TemporaryFile from typing import Union from urllib import request import requests import transformers from diffusers import AutoencoderKL from getpass_asterisk import getpass_asterisk from huggingface_hub import HfFolder, hf_hub_url from huggingface_hub import login as hf_hub_login from omegaconf import OmegaConf from omegaconf.dictconfig import DictConfig from tqdm import tqdm from transformers import (AutoProcessor, CLIPSegForImageSegmentation, CLIPTextModel, CLIPTokenizer) import invokeai.configs as configs from ldm.invoke.devices import choose_precision, choose_torch_device from ldm.invoke.generator.diffusers_pipeline import \ StableDiffusionGeneratorPipeline from ldm.invoke.globals import Globals, global_cache_dir, global_config_dir from ldm.invoke.readline import generic_completer warnings.filterwarnings("ignore") import torch transformers.logging.set_verbosity_error() # --------------------------globals----------------------- Model_dir = "models" Weights_dir = "ldm/stable-diffusion-v1/" # the initial "configs" dir is now bundled in the `invokeai.configs` package Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml" Default_config_file = Path(global_config_dir()) / "models.yaml" SD_Configs = Path(global_config_dir()) / "stable-diffusion" Datasets = OmegaConf.load(Dataset_path) completer = generic_completer(["yes", "no"]) Config_preamble = """# This file describes the alternative machine learning models # available to InvokeAI script. # # To add a new model, follow the examples below. Each # model requires a model config file, a weights file, # and the width and height of the images it # was trained on. """ # -------------------------------------------- def postscript(errors: None): if not any(errors): message = f""" ** Model Installation Successful ** You're all set! --- If you installed manually from source or with 'pip install': activate the virtual environment then run one of the following commands to start InvokeAI. Web UI: invokeai --web # (connect to http://localhost:9090) invokeai --web --host 0.0.0.0 # (connect to http://your-lan-ip:9090 from another computer on the local network) Command-line interface: invokeai --- If you installed using an installation script, run: {Globals.root}/invoke.{"bat" if sys.platform == "win32" else "sh"} Add the '--help' argument to see all of the command-line switches available for use. Have fun! """ else: message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n" for err in errors: message += f"\t - {err}\n" message += "Please check the logs above and correct any issues." print(message) # --------------------------------------------- def yes_or_no(prompt: str, default_yes=True): completer.set_options(["yes", "no"]) completer.complete_extensions(None) # turn off path-completion mode default = "y" if default_yes else "n" response = input(f"{prompt} [{default}] ") or default if default_yes: return response[0] not in ("n", "N") else: return response[0] in ("y", "Y") # --------------------------------------------- def user_wants_to_download_weights() -> str: """ Returns one of "skip", "recommended" or "customized" """ print( """You can download and configure the weights files manually or let this script do it for you. Manual installation is described at: https://invoke-ai.github.io/InvokeAI/installation/020_INSTALL_MANUAL/ You may download the recommended models (about 15GB total), install all models (40 GB!!) select a customized set, or completely skip this step. """ ) completer.set_options(["recommended", "customized", "skip"]) completer.complete_extensions(None) # turn off path-completion mode selection = None while selection is None: choice = input( "Download ecommended models, ll models, ustomized list, or kip this step? [r]: " ) if choice.startswith(("r", "R")) or len(choice) == 0: selection = "recommended" elif choice.startswith(("c", "C")): selection = "customized" elif choice.startswith(("a", "A")): selection = "all" elif choice.startswith(("s", "S")): selection = "skip" return selection # --------------------------------------------- def select_datasets(action: str): done = False default_datasets = default_dataset() while not done: datasets = dict() counter = 1 if action == "customized": print( """ Choose the weight file(s) you wish to download. Before downloading you will be given the option to view and change your selections. """ ) for ds in Datasets.keys(): recommended = Datasets[ds].get("recommended", False) r_str = "(recommended)" if recommended else "" print(f'[{counter}] {ds}:\n {Datasets[ds]["description"]} {r_str}') if yes_or_no(" Download?", default_yes=recommended): datasets[ds] = True counter += 1 else: for ds in Datasets.keys(): if Datasets[ds].get("recommended", False): datasets[ds] = True counter += 1 print("The following weight files will be downloaded:") counter = 1 for ds in datasets: dflt = "*" if ds in default_datasets else "" print(f" [{counter}] {ds}{dflt}") counter += 1 print("* default") ok_to_download = yes_or_no("Ok to download?") if not ok_to_download: if yes_or_no("Change your selection?"): action = "customized" pass else: done = True else: done = True return datasets if ok_to_download else None # --------------------------------------------- def recommended_datasets() -> dict: datasets = dict() for ds in Datasets.keys(): if Datasets[ds].get("recommended", False): datasets[ds] = True return datasets # --------------------------------------------- def default_dataset() -> dict: datasets = dict() for ds in Datasets.keys(): if Datasets[ds].get("default", False): datasets[ds] = True return datasets # --------------------------------------------- def all_datasets() -> dict: datasets = dict() for ds in Datasets.keys(): datasets[ds] = True return datasets # --------------------------------------------- def HfLogin(access_token) -> str: """ Helper for logging in to Huggingface The stdout capture is needed to hide the irrelevant "git credential helper" warning """ capture = io.StringIO() sys.stdout = capture try: hf_hub_login(token=access_token, add_to_git_credential=False) sys.stdout = sys.__stdout__ except Exception as exc: sys.stdout = sys.__stdout__ print(exc) raise exc # -------------------------------Authenticate against Hugging Face def authenticate(yes_to_all=False): print("** LICENSE AGREEMENT FOR WEIGHT FILES **") print("=" * shutil.get_terminal_size()[0]) print( """ By downloading the Stable Diffusion weight files from the official Hugging Face repository, you agree to have read and accepted the CreativeML Responsible AI License. The license terms are located here: https://huggingface.co/spaces/CompVis/stable-diffusion-license """ ) print("=" * shutil.get_terminal_size()[0]) if not yes_to_all: accepted = False while not accepted: accepted = yes_or_no("Accept the above License terms?") if not accepted: print("Please accept the License or Ctrl+C to exit.") else: print("Thank you!") else: print( "The program was started with a '--yes' flag, which indicates user's acceptance of the above License terms." ) # Authenticate to Huggingface using environment variables. # If successful, authentication will persist for either interactive or non-interactive use. # Default env var expected by HuggingFace is HUGGING_FACE_HUB_TOKEN. print("=" * shutil.get_terminal_size()[0]) print("Authenticating to Huggingface") hf_envvars = ["HUGGING_FACE_HUB_TOKEN", "HUGGINGFACE_TOKEN"] token_found = False if not (access_token := HfFolder.get_token()): print("Huggingface token not found in cache.") for ev in hf_envvars: if access_token := os.getenv(ev): print( f"Token was found in the {ev} environment variable.... Logging in." ) try: HfLogin(access_token) continue except ValueError: print(f"Login failed due to invalid token found in {ev}") else: print(f"Token was not found in the environment variable {ev}.") else: print("Huggingface token found in cache.") try: HfLogin(access_token) token_found = True except ValueError: print("Login failed due to invalid token found in cache") if not (yes_to_all or token_found): print( f""" You may optionally enter your Huggingface token now. InvokeAI *will* work without it but you will not be able to automatically download some of the Hugging Face style concepts. See https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/#using-a-hugging-face-concept for more information. Visit https://huggingface.co/settings/tokens to generate a token. (Sign up for an account if needed). Paste the token below using {"Ctrl+Shift+V" if sys.platform == "linux" else "Command+V" if sys.platform == "darwin" else "Ctrl+V, right-click, or Edit>Paste"}. Alternatively, press 'Enter' to skip this step and continue. You may re-run the configuration script again in the future if you do not wish to set the token right now. """ ) again = True while again: try: access_token = getpass_asterisk.getpass_asterisk(prompt="HF Token ❯ ") if access_token is None or len(access_token) == 0: raise EOFError HfLogin(access_token) access_token = HfFolder.get_token() again = False except ValueError: again = yes_or_no( "Failed to log in to Huggingface. Would you like to try again?" ) if not again: print( "\nRe-run the configuration script whenever you wish to set the token." ) print("...Continuing...") except EOFError: # this happens if the user pressed Enter on the prompt without any input; assume this means they don't want to input a token # safety net needed against accidental "Enter"? print("None provided - continuing") again = False elif access_token is None: print() print( "HuggingFace login did not succeed. Some functionality may be limited; see https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/#using-a-hugging-face-concept for more information" ) print() print( f"Re-run the configuration script without '--yes' to set the HuggingFace token interactively, or use one of the environment variables: {', '.join(hf_envvars)}" ) print("=" * shutil.get_terminal_size()[0]) return access_token # --------------------------------------------- # look for legacy model.ckpt in models directory and offer to # normalize its name def migrate_models_ckpt(): model_path = os.path.join(Globals.root, Model_dir, Weights_dir) if not os.path.exists(os.path.join(model_path, "model.ckpt")): return new_name = Datasets["stable-diffusion-1.4"]["file"] print('You seem to have the Stable Diffusion v4.1 "model.ckpt" already installed.') rename = yes_or_no(f'Ok to rename it to "{new_name}" for future reference?') if rename: print(f"model.ckpt => {new_name}") os.replace( os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name) ) # --------------------------------------------- def download_weight_datasets( models: dict, access_token: str, precision: str = "float32" ): migrate_models_ckpt() successful = dict() for mod in models.keys(): print(f"Downloading {mod}:") successful[mod] = _download_repo_or_file( Datasets[mod], access_token, precision=precision ) return successful def _download_repo_or_file( mconfig: DictConfig, access_token: str, precision: str = "float32" ) -> Path: path = None if mconfig["format"] == "ckpt": path = _download_ckpt_weights(mconfig, access_token) else: path = _download_diffusion_weights(mconfig, access_token, precision=precision) if "vae" in mconfig and "repo_id" in mconfig["vae"]: _download_diffusion_weights( mconfig["vae"], access_token, precision=precision ) return path def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path: repo_id = mconfig["repo_id"] filename = mconfig["file"] cache_dir = os.path.join(Globals.root, Model_dir, Weights_dir) return hf_download_with_resume( repo_id=repo_id, model_dir=cache_dir, model_name=filename, access_token=access_token, ) def _download_diffusion_weights( mconfig: DictConfig, access_token: str, precision: str = "float32" ): repo_id = mconfig["repo_id"] model_class = ( StableDiffusionGeneratorPipeline if mconfig.get("format", None) == "diffusers" else AutoencoderKL ) extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}] path = None for extra_args in extra_arg_list: try: path = download_from_hf( model_class, repo_id, cache_subdir="diffusers", safety_checker=None, **extra_args, ) except OSError as e: if str(e).startswith("fp16 is not a valid"): pass else: print(f"An unexpected error occurred while downloading the model: {e})") if path: break return path # --------------------------------------------- def hf_download_with_resume( repo_id: str, model_dir: str, model_name: str, access_token: str = None ) -> Path: model_dest = Path(os.path.join(model_dir, model_name)) os.makedirs(model_dir, exist_ok=True) url = hf_hub_url(repo_id, model_name) header = {"Authorization": f"Bearer {access_token}"} if access_token else {} open_mode = "wb" exist_size = 0 if os.path.exists(model_dest): exist_size = os.path.getsize(model_dest) header["Range"] = f"bytes={exist_size}-" open_mode = "ab" resp = requests.get(url, headers=header, stream=True) total = int(resp.headers.get("content-length", 0)) if ( resp.status_code == 416 ): # "range not satisfiable", which means nothing to return print(f"* {model_name}: complete file found. Skipping.") return model_dest elif resp.status_code != 200: print(f"** An error occurred during downloading {model_name}: {resp.reason}") elif exist_size > 0: print(f"* {model_name}: partial file found. Resuming...") else: print(f"* {model_name}: Downloading...") try: if total < 2000: print(f"*** ERROR DOWNLOADING {model_name}: {resp.text}") return None with open(model_dest, open_mode) as file, tqdm( desc=model_name, initial=exist_size, total=total + exist_size, unit="iB", unit_scale=True, unit_divisor=1000, ) as bar: for data in resp.iter_content(chunk_size=1024): size = file.write(data) bar.update(size) except Exception as e: print(f"An error occurred while downloading {model_name}: {str(e)}") return None return model_dest # --------------------------------------------- def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"): try: print(f"Installing {label} model file {model_url}...", end="", file=sys.stderr) if not os.path.exists(model_dest): os.makedirs(os.path.dirname(model_dest), exist_ok=True) print("", file=sys.stderr) request.urlretrieve( model_url, model_dest, ProgressBar(os.path.basename(model_dest)) ) print("...downloaded successfully", file=sys.stderr) else: print("...exists", file=sys.stderr) except Exception: print("...download failed") print(f"Error downloading {label} model") print(traceback.format_exc()) # --------------------------------------------- def update_config_file(successfully_downloaded: dict, opt: dict): config_file = ( Path(opt.config_file) if opt.config_file is not None else Default_config_file ) # In some cases (incomplete setup, etc), the default configs directory might be missing. # Create it if it doesn't exist. # this check is ignored if opt.config_file is specified - user is assumed to know what they # are doing if they are passing a custom config file from elsewhere. if config_file is Default_config_file and not config_file.parent.exists(): configs_src = Dataset_path.parent configs_dest = Default_config_file.parent shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True) yaml = new_config_file_contents(successfully_downloaded, config_file, opt) try: backup = None if os.path.exists(config_file): print( f"** {config_file.name} exists. Renaming to {config_file.stem}.yaml.orig" ) backup = config_file.with_suffix(".yaml.orig") ## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183 if sys.platform == "win32" and backup.is_file(): backup.unlink() config_file.rename(backup) with TemporaryFile() as tmp: tmp.write(Config_preamble.encode()) tmp.write(yaml.encode()) with open(str(config_file.expanduser().resolve()), "wb") as new_config: tmp.seek(0) new_config.write(tmp.read()) except Exception as e: print(f"**Error creating config file {config_file}: {str(e)} **") if backup is not None: print("restoring previous config file") ## workaround, for WinError 183, see above if sys.platform == "win32" and config_file.is_file(): config_file.unlink() backup.rename(config_file) return print(f"Successfully created new configuration file {config_file}") # --------------------------------------------- def new_config_file_contents(successfully_downloaded: dict, config_file: Path, opt: dict) -> str: if config_file.exists(): conf = OmegaConf.load(str(config_file.expanduser().resolve())) else: conf = OmegaConf.create() default_selected = None for model in successfully_downloaded: # a bit hacky - what we are doing here is seeing whether a checkpoint # version of the model was previously defined, and whether the current # model is a diffusers (indicated with a path) if conf.get(model) and Path(successfully_downloaded[model]).is_dir(): offer_to_delete_weights(model, conf[model], opt.yes_to_all) stanza = {} mod = Datasets[model] stanza["description"] = mod["description"] stanza["repo_id"] = mod["repo_id"] stanza["format"] = mod["format"] # diffusers don't need width and height (probably .ckpt doesn't either) # so we no longer require these in INITIAL_MODELS.yaml if "width" in mod: stanza["width"] = mod["width"] if "height" in mod: stanza["height"] = mod["height"] if "file" in mod: stanza["weights"] = os.path.relpath( successfully_downloaded[model], start=Globals.root ) stanza["config"] = os.path.normpath(os.path.join(SD_Configs, mod["config"])) if "vae" in mod: if "file" in mod["vae"]: stanza["vae"] = os.path.normpath( os.path.join(Model_dir, Weights_dir, mod["vae"]["file"]) ) else: stanza["vae"] = mod["vae"] if mod.get("default", False): stanza["default"] = True default_selected = True conf[model] = stanza # if no default model was chosen, then we select the first # one in the list if not default_selected: conf[list(successfully_downloaded.keys())[0]]["default"] = True return OmegaConf.to_yaml(conf) # --------------------------------------------- def offer_to_delete_weights(model_name: str, conf_stanza: dict, yes_to_all: bool): if not (weights := conf_stanza.get('weights')): return if re.match('/VAE/',conf_stanza.get('config')): return if yes_to_all or \ yes_or_no(f'\n** The checkpoint version of {model_name} is superseded by the diffusers version. Delete the original file {weights}?', default_yes=False): weights = Path(weights) if not weights.is_absolute(): weights = Path(Globals.root) / weights try: weights.unlink() except OSError as e: print(str(e)) # --------------------------------------------- # this will preload the Bert tokenizer fles def download_bert(): print( "Installing bert tokenizer (ignore deprecation errors)...", end="", file=sys.stderr, ) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) from transformers import BertTokenizerFast download_from_hf(BertTokenizerFast, "bert-base-uncased") print("...success", file=sys.stderr) # --------------------------------------------- def download_from_hf( model_class: object, model_name: str, cache_subdir: Path = Path("hub"), **kwargs ): print("", file=sys.stderr) # to prevent tqdm from overwriting path = global_cache_dir(cache_subdir) model = model_class.from_pretrained( model_name, cache_dir=path, resume_download=True, **kwargs, ) model_name = '--'.join(('models',*model_name.split('/'))) return path / model_name if model else None # --------------------------------------------- def download_clip(): print("Installing CLIP model (ignore deprecation errors)...", file=sys.stderr) version = "openai/clip-vit-large-patch14" print("Tokenizer...", file=sys.stderr, end="") download_from_hf(CLIPTokenizer, version) print("Text model...", file=sys.stderr, end="") download_from_hf(CLIPTextModel, version) print("...success", file=sys.stderr) # --------------------------------------------- def download_realesrgan(): print("Installing models from RealESRGAN...", file=sys.stderr) model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth" wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth" model_dest = os.path.join( Globals.root, "models/realesrgan/realesr-general-x4v3.pth" ) wdn_model_dest = os.path.join( Globals.root, "models/realesrgan/realesr-general-wdn-x4v3.pth" ) download_with_progress_bar(model_url, model_dest, "RealESRGAN") download_with_progress_bar(wdn_model_url, wdn_model_dest, "RealESRGANwdn") def download_gfpgan(): print("Installing GFPGAN models...", file=sys.stderr) for model in ( [ "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth", "./models/gfpgan/GFPGANv1.4.pth", ], [ "https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth", "./models/gfpgan/weights/detection_Resnet50_Final.pth", ], [ "https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth", "./models/gfpgan/weights/parsing_parsenet.pth", ], ): model_url, model_dest = model[0], os.path.join(Globals.root, model[1]) download_with_progress_bar(model_url, model_dest, "GFPGAN weights") # --------------------------------------------- def download_codeformer(): print("Installing CodeFormer model file...", file=sys.stderr) model_url = ( "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth" ) model_dest = os.path.join(Globals.root, "models/codeformer/codeformer.pth") download_with_progress_bar(model_url, model_dest, "CodeFormer") # --------------------------------------------- def download_clipseg(): print("Installing clipseg model for text-based masking...", end="", file=sys.stderr) CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined" try: download_from_hf(AutoProcessor, CLIPSEG_MODEL) download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL) except Exception: print("Error installing clipseg model:") print(traceback.format_exc()) print("...success", file=sys.stderr) # ------------------------------------- def download_safety_checker(): print("Installing model for NSFW content detection...", file=sys.stderr) try: from diffusers.pipelines.stable_diffusion.safety_checker import \ StableDiffusionSafetyChecker from transformers import AutoFeatureExtractor except ModuleNotFoundError: print("Error installing NSFW checker model:") print(traceback.format_exc()) return safety_model_id = "CompVis/stable-diffusion-safety-checker" print("AutoFeatureExtractor...", end="", file=sys.stderr) download_from_hf(AutoFeatureExtractor, safety_model_id) print("StableDiffusionSafetyChecker...", end="", file=sys.stderr) download_from_hf(StableDiffusionSafetyChecker, safety_model_id) print("...success", file=sys.stderr) # ------------------------------------- def download_weights(opt: dict) -> Union[str, None]: precision = ( "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device())) ) if opt.yes_to_all: models = default_dataset() if opt.default_only else recommended_datasets() access_token = authenticate(opt.yes_to_all) if len(models) > 0: successfully_downloaded = download_weight_datasets( models, access_token, precision=precision ) update_config_file(successfully_downloaded, opt) return else: choice = user_wants_to_download_weights() if choice == "recommended": models = recommended_datasets() elif choice == "all": models = all_datasets() elif choice == "customized": models = select_datasets(choice) if models is None and yes_or_no("Quit?", default_yes=False): sys.exit(0) else: # 'skip' return access_token = authenticate() if access_token is not None: HfFolder.save_token(access_token) print("\n** DOWNLOADING WEIGHTS **") successfully_downloaded = download_weight_datasets( models, access_token, precision=precision ) update_config_file(successfully_downloaded, opt) if len(successfully_downloaded) < len(models): return "some of the model weights downloads were not successful" # ------------------------------------- def get_root(root: str = None) -> str: if root: return root elif os.environ.get("INVOKEAI_ROOT"): return os.environ.get("INVOKEAI_ROOT") else: return Globals.root # ------------------------------------- def select_root(root: str, yes_to_all: bool = False): default = root or os.path.expanduser("~/invokeai") if yes_to_all: return default completer.set_default_dir(default) completer.complete_extensions(()) completer.set_line(default) directory = input( f"Select a directory in which to install InvokeAI's models and configuration files [{default}]: " ).strip(" \\") return directory or default # ------------------------------------- def select_outputs(root: str, yes_to_all: bool = False): default = os.path.normpath(os.path.join(root, "outputs")) if yes_to_all: return default completer.set_default_dir(os.path.expanduser("~")) completer.complete_extensions(()) completer.set_line(default) directory = input( f"Select the default directory for image outputs [{default}]: " ).strip(" \\") return directory or default # ------------------------------------- def initialize_rootdir(root: str, yes_to_all: bool = False): print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **") root_selected = False while not root_selected: outputs = select_outputs(root, yes_to_all) outputs = ( outputs if os.path.isabs(outputs) else os.path.abspath(os.path.join(Globals.root, outputs)) ) print(f'\nInvokeAI image outputs will be placed into "{outputs}".') if not yes_to_all: root_selected = yes_or_no("Accept this location?") else: root_selected = True print( f'\nYou may change the chosen output directory at any time by editing the --outdir options in "{Globals.initfile}",' ) print( "You may also change the runtime directory by setting the environment variable INVOKEAI_ROOT.\n" ) enable_safety_checker = True if not yes_to_all: print( "The NSFW (not safe for work) checker blurs out images that potentially contain sexual imagery." ) print( "It can be selectively enabled at run time with --nsfw_checker, and disabled with --no-nsfw_checker." ) print( "The following option will set whether the checker is enabled by default. Like other options, you can" ) print(f"change this setting later by editing the file {Globals.initfile}.") print( "This is NOT recommended for systems with less than 6G VRAM because of the checker's memory requirements." ) enable_safety_checker = yes_or_no( "Enable the NSFW checker by default?", enable_safety_checker ) safety_checker = "--nsfw_checker" if enable_safety_checker else "--no-nsfw_checker" for name in ( "models", "configs", "embeddings", "text-inversion-data", "text-inversion-training-data", ): os.makedirs(os.path.join(root, name), exist_ok=True) configs_src = Path(configs.__path__[0]) configs_dest = Path(root) / "configs" if not os.path.samefile(configs_src, configs_dest): shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True) init_file = os.path.join(Globals.root, Globals.initfile) print(f'Creating the initialization file at "{init_file}".\n') with open(init_file, "w") as f: f.write( f"""# InvokeAI initialization file # This is the InvokeAI initialization file, which contains command-line default values. # Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting # or renaming it and then running invokeai-configure again. # the --outdir option controls the default location of image files. --outdir="{outputs}" # generation arguments {safety_checker} # You may place other frequently-used startup commands here, one or more per line. # Examples: # --web --host=0.0.0.0 # --steps=20 # -Ak_euler_a -C10.0 # """ ) # ------------------------------------- class ProgressBar: def __init__(self, model_name="file"): self.pbar = None self.name = model_name def __call__(self, block_num, block_size, total_size): if not self.pbar: self.pbar = tqdm( desc=self.name, initial=0, unit="iB", unit_scale=True, unit_divisor=1000, total=total_size, ) self.pbar.update(block_size) # ------------------------------------- def main(): parser = argparse.ArgumentParser(description="InvokeAI model downloader") parser.add_argument( "--interactive", dest="interactive", action=argparse.BooleanOptionalAction, default=True, help="run in interactive mode (default) - DEPRECATED", ) parser.add_argument( "--skip-sd-weights", dest="skip_sd_weights", action=argparse.BooleanOptionalAction, default=False, help="skip downloading the large Stable Diffusion weight files", ) parser.add_argument( "--full-precision", dest="full_precision", action=argparse.BooleanOptionalAction, type=bool, default=False, help="use 32-bit weights instead of faster 16-bit weights", ) parser.add_argument( "--yes", "-y", dest="yes_to_all", action="store_true", help='answer "yes" to all prompts', ) parser.add_argument( "--default_only", action="store_true", help="when --yes specified, only install the default model", ) parser.add_argument( "--config_file", "-c", dest="config_file", type=str, default=None, help="path to configuration file to create", ) parser.add_argument( "--root_dir", dest="root", type=str, default=None, help="path to root of install directory", ) opt = parser.parse_args() # setting a global here Globals.root = os.path.expanduser(get_root(opt.root) or "") try: # We check for to see if the runtime directory is correctly initialized. if Globals.root == "" or not os.path.exists( os.path.join(Globals.root, "invokeai.init") ): initialize_rootdir(Globals.root, opt.yes_to_all) # Optimistically try to download all required assets. If any errors occur, add them and proceed anyway. errors = set() if not opt.interactive: print( "WARNING: The --(no)-interactive argument is deprecated and will be removed. Use --skip-sd-weights." ) opt.skip_sd_weights = True if opt.skip_sd_weights: print("** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **") else: print("** DOWNLOADING DIFFUSION WEIGHTS **") errors.add(download_weights(opt)) print("\n** DOWNLOADING SUPPORT MODELS **") download_bert() download_clip() download_realesrgan() download_gfpgan() download_codeformer() download_clipseg() download_safety_checker() postscript(errors=errors) except KeyboardInterrupt: print("\nGoodbye! Come back soon.") except Exception as e: print(f'\nA problem occurred during initialization.\nThe error was: "{str(e)}"') print(traceback.format_exc()) # ------------------------------------- if __name__ == "__main__": main()