''' ldm.invoke.generator.inpaint descends from ldm.invoke.generator ''' from __future__ import annotations import math import PIL import cv2 import numpy as np import torch from PIL import Image, ImageFilter, ImageOps, ImageChops from ldm.invoke.generator.diffusers_pipeline import image_resized_to_grid_as_tensor, StableDiffusionGeneratorPipeline from ldm.invoke.generator.img2img import Img2Img from ldm.invoke.globals import Globals from ldm.util import debug_image infill_methods: list[str] = list() if Globals.try_patchmatch: from patchmatch import patch_match if patch_match.patchmatch_available: print('>> Patchmatch initialized') infill_methods.append('patchmatch') else: print('>> Patchmatch not loaded (nonfatal)') else: print('>> Patchmatch loading disabled') infill_methods.append('tile') class Inpaint(Img2Img): def __init__(self, model, precision): self.inpaint_height = 0 self.inpaint_width = 0 self.enable_image_debugging = False self.init_latent = None self.pil_image = None self.pil_mask = None self.mask_blur_radius = 0 super().__init__(model, precision) # Outpaint support code def get_tile_images(self, image: np.ndarray, width=8, height=8): _nrows, _ncols, depth = image.shape _strides = image.strides nrows, _m = divmod(_nrows, height) ncols, _n = divmod(_ncols, width) if _m != 0 or _n != 0: return None return np.lib.stride_tricks.as_strided( np.ravel(image), shape=(nrows, ncols, height, width, depth), strides=(height * _strides[0], width * _strides[1], *_strides), writeable=False ) def infill_patchmatch(self, im: Image.Image) -> Image: if im.mode != 'RGBA': return im # Skip patchmatch if patchmatch isn't available if not patch_match.patchmatch_available: return im # Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though) im_patched_np = patch_match.inpaint(im.convert('RGB'), ImageOps.invert(im.split()[-1]), patch_size = 3) im_patched = Image.fromarray(im_patched_np, mode = 'RGB') return im_patched def tile_fill_missing(self, im: Image.Image, tile_size: int = 16, seed: int = None) -> Image: # Only fill if there's an alpha layer if im.mode != 'RGBA': return im a = np.asarray(im, dtype=np.uint8) tile_size = (tile_size, tile_size) # Get the image as tiles of a specified size tiles = self.get_tile_images(a,*tile_size).copy() # Get the mask as tiles tiles_mask = tiles[:,:,:,:,3] # Find any mask tiles with any fully transparent pixels (we will be replacing these later) tmask_shape = tiles_mask.shape tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape)) n,ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:]) tiles_mask = (tiles_mask > 0) tiles_mask = tiles_mask.reshape((n,ny)).all(axis = 1) # Get RGB tiles in single array and filter by the mask tshape = tiles.shape tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), * tiles.shape[2:])) filtered_tiles = tiles_all[tiles_mask] if len(filtered_tiles) == 0: return im # Find all invalid tiles and replace with a random valid tile replace_count = (tiles_mask == False).sum() rng = np.random.default_rng(seed = seed) tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count),:,:,:] # Convert back to an image tiles_all = tiles_all.reshape(tshape) tiles_all = tiles_all.swapaxes(1,2) st = tiles_all.reshape((math.prod(tiles_all.shape[0:2]), math.prod(tiles_all.shape[2:4]), tiles_all.shape[4])) si = Image.fromarray(st, mode='RGBA') return si def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image: npimg = np.asarray(mask, dtype=np.uint8) # Detect any partially transparent regions npgradient = np.uint8(255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0))) # Detect hard edges npedge = cv2.Canny(npimg, threshold1=100, threshold2=200) # Combine npmask = npgradient + npedge # Expand npmask = cv2.dilate(npmask, np.ones((3,3), np.uint8), iterations = int(edge_size / 2)) new_mask = Image.fromarray(npmask) if edge_blur > 0: new_mask = new_mask.filter(ImageFilter.BoxBlur(edge_blur)) return ImageOps.invert(new_mask) def seam_paint(self, im: Image.Image, seam_size: int, seam_blur: int, prompt, sampler, steps, cfg_scale, ddim_eta, conditioning, strength, noise, infill_method, step_callback) -> Image.Image: hard_mask = self.pil_image.split()[-1].copy() mask = self.mask_edge(hard_mask, seam_size, seam_blur) make_image = self.get_make_image( prompt, sampler, steps, cfg_scale, ddim_eta, conditioning, init_image = im.copy().convert('RGBA'), mask_image = mask, strength = strength, mask_blur_radius = 0, seam_size = 0, step_callback = step_callback, inpaint_width = im.width, inpaint_height = im.height, infill_method = infill_method ) seam_noise = self.get_noise(im.width, im.height) result = make_image(seam_noise) return result @torch.no_grad() def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta, conditioning, init_image: PIL.Image.Image | torch.FloatTensor, mask_image: PIL.Image.Image | torch.FloatTensor, strength: float, mask_blur_radius: int = 8, # Seam settings - when 0, doesn't fill seam seam_size: int = 0, seam_blur: int = 0, seam_strength: float = 0.7, seam_steps: int = 10, tile_size: int = 32, step_callback=None, inpaint_replace=False, enable_image_debugging=False, infill_method = infill_methods[0], # The infill method to use inpaint_width=None, inpaint_height=None, **kwargs): """ Returns a function returning an image derived from the prompt and the initial image + mask. Return value depends on the seed at the time you call it. kwargs are 'init_latent' and 'strength' """ self.enable_image_debugging = enable_image_debugging self.inpaint_width = inpaint_width self.inpaint_height = inpaint_height if isinstance(init_image, PIL.Image.Image): self.pil_image = init_image.copy() # Do infill if infill_method == 'patchmatch' and patch_match.patchmatch_available: init_filled = self.infill_patchmatch(self.pil_image.copy()) else: # if infill_method == 'tile': # Only two methods right now, so always use 'tile' if not patchmatch init_filled = self.tile_fill_missing( self.pil_image.copy(), seed = self.seed, tile_size = tile_size ) init_filled.paste(init_image, (0,0), init_image.split()[-1]) # Resize if requested for inpainting if inpaint_width and inpaint_height: init_filled = init_filled.resize((inpaint_width, inpaint_height)) debug_image(init_filled, "init_filled", debug_status=self.enable_image_debugging) # Create init tensor init_image = image_resized_to_grid_as_tensor(init_filled.convert('RGB')) if isinstance(mask_image, PIL.Image.Image): self.pil_mask = mask_image.copy() debug_image(mask_image, "mask_image BEFORE multiply with pil_image", debug_status=self.enable_image_debugging) init_alpha = self.pil_image.getchannel("A") if mask_image.mode != "L": # FIXME: why do we get passed an RGB image here? We can only use single-channel. mask_image = mask_image.convert("L") mask_image = ImageChops.multiply(mask_image, init_alpha) self.pil_mask = mask_image # Resize if requested for inpainting if inpaint_width and inpaint_height: mask_image = mask_image.resize((inpaint_width, inpaint_height)) debug_image(mask_image, "mask_image AFTER multiply with pil_image", debug_status=self.enable_image_debugging) mask: torch.FloatTensor = image_resized_to_grid_as_tensor(mask_image, normalize=False) else: mask: torch.FloatTensor = mask_image self.mask_blur_radius = mask_blur_radius # todo: support cross-attention control uc, c, _ = conditioning # noinspection PyTypeChecker pipeline: StableDiffusionGeneratorPipeline = self.model pipeline.scheduler = sampler def make_image(x_T): # FIXME: some of this z_enc and inpaint_replace stuff was probably important # # to replace masked area with latent noise, weighted by inpaint_replace strength # if inpaint_replace > 0.0: # print(f'>> inpaint will replace what was under the mask with a strength of {inpaint_replace}') # l_noise = self.get_noise(kwargs['width'],kwargs['height']) # inverted_mask = 1.0-mask # there will be 1s where the mask is # masked_region = (1.0-inpaint_replace) * inverted_mask * z_enc + inpaint_replace * inverted_mask * l_noise # z_enc = z_enc * mask + masked_region pipeline_output = pipeline.inpaint_from_embeddings( init_image=init_image, mask=1 - mask, # expects white means "paint here." strength=strength, num_inference_steps=steps, text_embeddings=c, unconditioned_embeddings=uc, guidance_scale=cfg_scale, noise_func=self.get_noise_like, callback=step_callback, ) result = pipeline.numpy_to_pil(pipeline_output.images)[0] # Seam paint if this is our first pass (seam_size set to 0 during seam painting) if seam_size > 0: old_image = self.pil_image or init_image old_mask = self.pil_mask or mask_image result = self.seam_paint(result, seam_size, seam_blur, prompt, sampler, seam_steps, cfg_scale, ddim_eta, conditioning, seam_strength, x_T, infill_method, step_callback) # Restore original settings self.get_make_image(prompt,sampler,steps,cfg_scale,ddim_eta, conditioning, old_image, old_mask, strength, mask_blur_radius, seam_size, seam_blur, seam_strength, seam_steps, tile_size, step_callback, inpaint_replace, enable_image_debugging, inpaint_width = inpaint_width, inpaint_height = inpaint_height, infill_method = infill_method, **kwargs) return result return make_image def sample_to_image(self, samples)->Image.Image: gen_result = super().sample_to_image(samples).convert('RGB') debug_image(gen_result, "gen_result", debug_status=self.enable_image_debugging) # Resize if necessary if self.inpaint_width and self.inpaint_height: gen_result = gen_result.resize(self.pil_image.size) if self.pil_image is None or self.pil_mask is None: return gen_result corrected_result = super().repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius) debug_image(corrected_result, "corrected_result", debug_status=self.enable_image_debugging) return corrected_result