import os import torch from typing import Optional from .base import ( ModelBase, ModelConfigBase, BaseModelType, ModelType, SubModelType, EmptyConfigLoader, calc_model_size_by_fs, calc_model_size_by_data, ) from invokeai.app.services.config import InvokeAIAppConfig class VaeModel(ModelBase): #vae_class: Type #model_size: int class Config(ModelConfigBase): format: None def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): assert model_type == ModelType.Vae super().__init__(model_path, base_model, model_type) try: config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json") #config = json.loads(os.path.join(self.model_path, "config.json")) except: raise Exception("Invalid vae model! (config.json not found or invalid)") try: vae_class_name = config.get("_class_name", "AutoencoderKL") self.vae_class = self._hf_definition_to_type(["diffusers", vae_class_name]) self.model_size = calc_model_size_by_fs(self.model_path) except: raise Exception("Invalid vae model! (Unkown vae type)") def get_size(self, child_type: Optional[SubModelType] = None): if child_type is not None: raise Exception("There is no child models in vae model") return self.model_size def get_model( self, torch_dtype: Optional[torch.dtype], child_type: Optional[SubModelType] = None, ): if child_type is not None: raise Exception("There is no child models in vae model") model = self.vae_class.from_pretrained( self.model_path, torch_dtype=torch_dtype, ) # calc more accurate size self.model_size = calc_model_size_by_data(model) return model @classmethod def save_to_config(cls) -> bool: return False @classmethod def detect_format(cls, path: str): if os.path.isdir(path): return "diffusers" else: return "checkpoint" @classmethod def convert_if_required(cls, model_path: str, dst_cache_path: str, config: Optional[dict]) -> str: if cls.detect_format(model_path) != "diffusers": # TODO: #_convert_vae_ckpt_and_cache raise NotImplementedError("TODO: vae convert") else: return model_path # TODO: rework DictConfig = dict def _convert_vae_ckpt_and_cache(self, mconfig: DictConfig) -> str: """ Convert the VAE indicated in mconfig into a diffusers AutoencoderKL object, cache it to disk, and return Path to converted file. If already on disk then just returns Path. """ app_config = InvokeAIAppConfig.get_config() root = app_config.root_dir weights_file = root / mconfig.path config_file = root / mconfig.config diffusers_path = app_config.converted_ckpts_dir / weights_file.stem image_size = mconfig.get('width') or mconfig.get('height') or 512 # return cached version if it exists if diffusers_path.exists(): return diffusers_path # this avoids circular import error from .convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers if weights_file.suffix == '.safetensors': checkpoint = safetensors.torch.load_file(weights_file) else: checkpoint = torch.load(weights_file, map_location="cpu") # sometimes weights are hidden under "state_dict", and sometimes not if "state_dict" in checkpoint: checkpoint = checkpoint["state_dict"] config = OmegaConf.load(config_file) vae_model = convert_ldm_vae_to_diffusers( checkpoint = checkpoint, vae_config = config, image_size = image_size, model_root = app_config.models_path, ) vae_model.save_pretrained( diffusers_path, safe_serialization=is_safetensors_available() ) return diffusers_path