import os import torch import safetensors from enum import Enum from pathlib import Path from typing import Optional, Union, Literal from .base import ( ModelBase, ModelConfigBase, BaseModelType, ModelType, SubModelType, ModelVariantType, EmptyConfigLoader, calc_model_size_by_fs, calc_model_size_by_data, classproperty, ) from invokeai.app.services.config import InvokeAIAppConfig from diffusers.utils import is_safetensors_available from omegaconf import OmegaConf class VaeModelFormat(str, Enum): Checkpoint = "checkpoint" Diffusers = "diffusers" class VaeModel(ModelBase): #vae_class: Type #model_size: int class Config(ModelConfigBase): model_format: VaeModelFormat def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): assert model_type == ModelType.Vae super().__init__(model_path, base_model, model_type) try: config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json") #config = json.loads(os.path.join(self.model_path, "config.json")) except: raise Exception("Invalid vae model! (config.json not found or invalid)") try: vae_class_name = config.get("_class_name", "AutoencoderKL") self.vae_class = self._hf_definition_to_type(["diffusers", vae_class_name]) self.model_size = calc_model_size_by_fs(self.model_path) except: raise Exception("Invalid vae model! (Unkown vae type)") def get_size(self, child_type: Optional[SubModelType] = None): if child_type is not None: raise Exception("There is no child models in vae model") return self.model_size def get_model( self, torch_dtype: Optional[torch.dtype], child_type: Optional[SubModelType] = None, ): if child_type is not None: raise Exception("There is no child models in vae model") model = self.vae_class.from_pretrained( self.model_path, torch_dtype=torch_dtype, ) # calc more accurate size self.model_size = calc_model_size_by_data(model) return model @classproperty def save_to_config(cls) -> bool: return False @classmethod def detect_format(cls, path: str): if os.path.isdir(path): return VaeModelFormat.Diffusers else: return VaeModelFormat.Checkpoint @classmethod def convert_if_required( cls, model_path: str, output_path: str, config: ModelConfigBase, # empty config or config of parent model base_model: BaseModelType, ) -> str: if cls.detect_format(model_path) == VaeModelFormat.Checkpoint: return _convert_vae_ckpt_and_cache( weights_path=model_path, output_path=output_path, base_model=base_model, model_config=config, ) else: return model_path # TODO: rework def _convert_vae_ckpt_and_cache( weights_path: str, output_path: str, base_model: BaseModelType, model_config: ModelConfigBase, ) -> str: """ Convert the VAE indicated in mconfig into a diffusers AutoencoderKL object, cache it to disk, and return Path to converted file. If already on disk then just returns Path. """ app_config = InvokeAIAppConfig.get_config() weights_path = app_config.root_dir / weights_path output_path = Path(output_path) """ this size used only in when tiling enabled to separate input in tiles sizes in configs from stable diffusion githubs(1 and 2) set to 256 on huggingface it: 1.5 - 512 1.5-inpainting - 256 2-inpainting - 512 2-depth - 256 2-base - 512 2 - 768 2.1-base - 768 2.1 - 768 """ image_size = 512 # return cached version if it exists if output_path.exists(): return output_path if base_model in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}: from .stable_diffusion import _select_ckpt_config # all sd models use same vae settings config_file = _select_ckpt_config(base_model, ModelVariantType.Normal) else: raise Exception(f"Vae conversion not supported for model type: {base_model}") # this avoids circular import error from ..convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers if weights_path.suffix == '.safetensors': checkpoint = safetensors.torch.load_file(weights_path, device="cpu") else: checkpoint = torch.load(weights_path, map_location="cpu") # sometimes weights are hidden under "state_dict", and sometimes not if "state_dict" in checkpoint: checkpoint = checkpoint["state_dict"] config = OmegaConf.load(config_file) vae_model = convert_ldm_vae_to_diffusers( checkpoint = checkpoint, vae_config = config, image_size = image_size, ) vae_model.save_pretrained( output_path, safe_serialization=is_safetensors_available() ) return output_path